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Figure 1: Pairwise comparison of line count for original P4 programs (blue) and their O4 counterparts (green).

ABSTRACT
Over the last years, P4 has positioned itself as the primary language
for data-plane programming. Despite its constant evolution, the P4
language still “suffers” from one significant limitation: the volumi-
nosity of its code. P4 applications easily reach thousands of lines of
code, becoming hard to develop, debug, and maintain. The reason is
twofold: P4 requires many characters to express individual concepts
(verbosity), and it relies on code repetition (lack of parametrization).

Today, P4 users overcome this limitation by relying on templat-
ing tools, hand-crafted scripts, and complicated macros. Unfortu-
nately, these methods are not optimal: they make the development
process difficult and do not generalize well beyond one codebase.

In this work, we propose reducing the voluminosity of P4 code
by introducing higher-level language constructs. We present O4, an
extended version of P4, that includes three such constructs: arrays
(which group same-type entities together), loops (which reduce sim-
ple repetitions), and factories (which enable code parametrization).

We evaluate O4 on several state-of-the-art programs and show
how, with respect to P4: (i) it reduces code volumes by up to 80%, (ii)
it decreases code verbosity by 44% on average, and (iii) it cuts dupli-
cated code by 60%. We contribute a compiler implementation that
provides said benefits with just a 3.5% increase in compilation time.

CCS CONCEPTS
• Networks → Programmable networks; • Software and its
engineering → Domain specific languages.
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1 INTRODUCTION
P4 was proposed in 2014 as a high-level language to program the
data planes of programmable network devices [23, 44]. Since its in-
ception, the P4 language has been widely adopted, enabling innova-
tion in numerous areas of networking: e.g., traffic engineering [36],
telemetry [33], packet scheduling [22], and security [32, 39].

Despite its continuous evolution (with new features and syntax
introduced [2, 44]), the P4 language still “suffers” from one limita-
tion: its voluminosity. Even simple P4 programs span thousands of
lines of code. The origin of P4’s voluminosity is two-fold. First, the
language is verbose: P4 primitives require more characters than their
equivalents in other languages (cf. Listing 1). Second, P4 primitives
are poorly parametrized, generating code duplicates (cf. Listing 2).

P4 language’s voluminosity convolutes the development process
of P4-based applications: i.e., the writing, debugging, deployment,
and maintenance phases. Indeed, voluminous code takes longer to
be written, read and understood; larger programs have increased
probability of containing errors [38]; and errors can propagate
across multiple code repetitions. The latter are particularly hard
to catch when the repetition is implicit, i.e. not a one-to-one copy
but rather the repetition of an algorithmic assumption or structure.
Listing 1: Simple primitives, such as register updates, are
more verbose in P4 than in other languages.

// P4
RegisterAction <...>( my_register) inc = {

void apply (...) { val = val + 1; ... }
};

// C++
(*reg )++;

Listing 2: The lack of parametrization, e.g. in registers, leads
to code duplication in P4 programs.

Register <... >() my_register_1;
RegisterAction <...>( my_register_1) inc1 = {

void apply (...) { val = val + 1; ... }
};

Register <... >() my_register_2;
RegisterAction <...>( my_register_2) inc2 = {

void apply (...) { val = val + 1; ... }
};

https://doi.org/10.1145/3565475.3569078
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P4 users today are well aware of the consequences of P4’s volu-
minosity, and try to overcome it by relying on various tools. We
surveyed a group of 27 P4 programmers and found that all of them
rely on some tool to reduce P4’s voluminosity (cf. Figure 2). Some
of them rely on copy-pasting code fragments, templating tools (e.g.,
[1, 26, 30]), or hand-crafted scripts. While these tools may solve the
problem temporarily, they do not generalize well, being impractical
in the long run. Others rely on pre-processor macros, which are too
generic since they do not inherently convey the restrictions of P4.
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Figure 2: P4 users leverage tools to reduce its volume.

Recent research works have also tried simplifying the P4 devel-
opment process, by either directly fitting P4 programs into the
target hardware resources [29, 30, 35, 41], or adding macro-like an-
notations into P4 code [40]. These approaches either significantly
increase P4’s expressivity (e.g., allowing functionalities well beyond
the scope of P4, potentially giving programmers a false sense of
what is computable on network hardware); or they abstract away
the low-level parameters that enable P4’s fine-tuning capabilities.

In the long term, the ideal solution would be to integrate a set
of higher-level constructs–directly into the P4 language–to reduce
its voluminosity in a target-agnostic manner. While reducing code
volumes may be straightforward in other programming languages,
in P4 it is challenging due to the need of preserving the language’s
expressivity and fine-grained control. Indeed, any P4 extension needs
to convey the constraints of programmable data planes (e.g., the
lack of dynamic memory allocation and of recursion), and to pre-
serve the language’s fine-tuning capabilities for high performance.

Our work. We propose the addition of three simple constructs
to P4–arrays, loops, and factories–which we specifically design to
match the strict requirements of programmable data planes. Ar-
rays group together variables of the same type, loops reduce code-
block repetitions, and factories introduce code parametrization. We
show how these primitives reduce P4’s voluminosity significantly
while preserving the language’s expressivity. These abstractions are
backward-compatible with existing P4 programs and can easily be
adopted. We also present a compiler that translates programs in our
higher-level P4 extension (which we call “O4”), into P4 programs.

While previous works [35, 40] include language constructs simi-
lar to O4, such as arrays and loops, the purpose of their usage is
radically different. Indeed, O4 is the first work that focuses squarely
on reducing P4 language’s voluminosity, empirically proving the
benefit of its constructs to this end. Further, O4 introduces a new
construct–factories–which was not proposed by previous works.

Performance. We evaluate O4 on various applications and show
how, compared to P4, it manages to reduce code volumes up to 80%,
code verbosity by 44% on average, and duplicate code by 60% on
average. Overall, O4 performs on par with state-of-the-art target-
dependent languages such as P4All [35] while providing seamless
integration with the original P4 language. We show how the pro-
posed abstractions only increase by 3.5% the total compilation time.

Contributions. Our main contributions are:
• A set of language constructs that manage to reduce the code
voluminosity of the P4 language (§2).

• A compiler, written in Racket, that transpiles O4 code to P4,
and compiles the result into hardware code1 (§3).

• A comprehensive evaluation of O4, showing its effective-
ness in reducing P4’s voluminosity, while only negligibly
increasing the total compilation time (§4).

2 HIGHER-LEVEL ABSTRACTIONS
In this section, we propose three new language abstractions–arrays,
loops, and factories–that reduce the voluminosity of P4 while pre-
serving its expressivity. First, we introduce arrays, which group
together variables of the same type (§2.1). Second, we introduce
loops, which reduce repetitions of code blocks (§2.2). Finally, we
introduce factories, which enable code parameterization (§2.3).

2.1 Arrays
The first type of repetition that one can encounter in P4 programs
is variable repetitions. In P4, programmers have to instantiate every
new variable from scratch, regardless of whether they have already
instantiated other variables of the same type (cf. Listing 3). For com-
plex P4 programs, this process becomes tedious. In other program-
ming languages, this problem has long been solved by introducing
arrays. Arrays are data structures allowing the definition of multi-
ple variables of the same type with a single instantiation [12, 13].
Listing 3: Simple example for O4 arrays. asdaaaaafasdfasdf

// P4: variables // O4: array
bit <32> a_0_0; bit <32 >[2][2] a;
bit <32> a_0_1;
bit <32> a_1_0;
bit <32> a_1_1;

As of today, the P4 language does not support arrays yet: the closest
supported abstractions are header stacks and tuple types. These
primitives are either limited to header fields or are not indexable.

Unfortunately, adding arrays to P4 is not straightforward. The
main challenge is that the P4 language does not allow arbitrary
memory allocation. We overcome this limitation by introducing
fixed-length arrays, in which the length must be specified at compile
time. During compilation, the O4 compiler translates each array
declaration into individual P4 variable declarations (cf.§3). With
this design, arrays preserve the P4-language’s expressivity (i.e.,
they neither narrow nor extend the functionality of P4): each array
directly corresponds to a group of same-type P4 variables, and
every group of same-type P4 variables can be expressed as an array.

1Code available at https://github.com/nsg-ethz/O4

https://github.com/nsg-ethz/O4


Reducing P4 Language’s Voluminosity
using Higher-Level Constructs EuroP4 ’22, December 9, 2022, Roma, Italy

Array types. We define arrays as type<width>[length]. We sup-
port most P4 data types: all base types, specialized types, and extern-
derived types [44] (e.g., int, bit<W> or int<W>). Arrays can be used
wherever their types are allowed in P4, and are accessed using the
subscript operator: array[index]. Array sizes and indices have to
be known at compile time. Multidimensional arrays are allowed.

Array literals. We also define array literals, i.e., arrays that are
not associated with a variable name. Array literals can be useful
for “single-use” arrays (e.g. when looping over indices in a loop), or
when assigning initial values to an array. The O4 compiler directly
maps them to simple P4 expressions (e.g., [0, 1, 2] in Listing 4).

2.2 Loops
The second type of repetition that one can encounter in P4 programs
is the repetition of code blocks. The lack of parametrization in P4
language makes repeated code blocks common within P4 programs.
Other high-level programming languages usually reduce code-block
repetitions by introducing loops [15, 16]. Loops allow programmers
to compress repeated code segments into a single instantiation.

The P4 language, however, does not currently support any iter-
ation construct within its main control body (i.e., loops are only
allowed in the P4 parsers). The main reason is that programmable
data planes do not support general recursion. Indeed, performing
a loop in the data plane would require sending the packet across
the pipeline multiple times, which breaks the throughput guaran-
tees. Even though recursive packet processing is not possible in
programmable data planes, iterative data structures at the language
level can significantly reduce code voluminosity. As such, the key
challenge in introducing loops to P4 is to only do this at the lan-
guage level (i.e., to reduce code-block repetitions), ensuring that
they do not extend the expressivity of the P4 language (i.e., that
they do not allow more computation than is actually supported).

We solve this challenge by introducing fixed-depth loops, where
the loop’s depth needs to be specified at compile time. During com-
pilation, the O4 compiler unrolls the declared loops, performing
in-place replacement of the loop iterators to prevent introducing
additional variables [17]. Specifically, we propose a for/in loop
primitive, which aggregates a fixed set of code repetitions into a
single concise instantiation (cf. Listing 4). This would not be the
case for primitives such as while or do-while, which enable in-
finite loops. With this design, we restrict the expressive power
of the loop abstraction and prevent arbitrarily long loops in P4,
making it fit the constraints of programmable devices. The result-
ing loops preserve the expressivity of the P4 language: any set of
repeated P4 blocks can be represented by an O4 loop, and vice versa.

Listing 4: Simple example for O4 loops. asdfasaaaaaadfasdf

// P4: // O4: loops
my_call (0); for (int index in [0, 1, 2])
my_call (1); my_call(index);
my_call (2);

Loop support. We support loops in the control-blocks of P4 pro-
grams and provide support for nested loops. We define loops as
for (type name in expression) statement. The expression can
represent any P4 expression, but it can only support one iterat-
ing variable per loop (i.e., the compiler only accepts as input one-
dimensional arrays). The loop iterator needs to be immutable. The
body statement of the loop does not have to be a block statement.
Hence, the compiler must guarantee that the scopes are not violated.

2.3 Factories
While arrays and loops already significantly reduce P4’s volumi-
nosity, they cannot address its lack of parametrization. As of today,
P4 provides limited parametrization support for a few primitives
such as controls and actions, and no support for primitives such
as tables and registers. For instance, multiple actions performing
the same operations on (i) different registers, or (ii) multiple tables
that only differ in their key fields, need to be declared individually.

Other high-level programming languages enable code parametri-
zation by introducing factories (or constructors). With factories, one
canmodularize code into library-like structures (e.g., a parametrized
sketch) that the compiler can then expand at compile time [14, 18].

Introducing factory support for most P4 constructs (e.g., regis-
ters, tables, and externs) is intricate. The key challenge in doing
so is, once again, preserving expressivity. Indeed, a naive factory
design can become a Turing-complete primitive, thus subject to
the halting problem [20] and violating throughput guarantees. We
solve this problem by designing factories that can only call existing
P4 primitives or other factories, which will eventually call existing
P4 primitives (i.e., no transitive recursion). Thanks to this, factories
do not introduce any additional program logic per se. Accordingly,
we can guarantee that they preserve P4 language’s expressivity.

Listing 5: Simple example for O4 factories. asdaaaaaffffffffff
// P4: repetitive table structure
control my_control(my_header hdr , ...) {

table my_table_0 {
key = { hdr.field_0: exact; }
actions = { my_action; }

}
table my_table_1 {

key = { hdr.field_1: exact; }
actions = { my_action; }

}
}

// O4: abstracts the table structure
control my_control(my_header hdr , ...) {

factory my_factory(bit <8> field) {
table my_table {

key = { field: exact; }
actions = { my_action; }

}
return my_table;

}
my_table_0 = my_factory(hdr.field_0 );
my_table_1 = my_factory(hdr.field_1 );

}
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Factory support. We design O4 factories by borrowing concepts
from object-oriented factories and from P4 constructors.We provide
support for factories in actions, tables, and externs. We declare facto-
ries as: factory name(params) {body ... return body-name;},
where body and params are their corresponding P4 counterparts.
Factories allow the parametrization of any of their wrapped prim-
itives (cf. Listing 5). Indeed, their body can include an action dec-
laration, a table declaration, or an extern instantiation. O4 facto-
ries can call other factories, which allows O4 programs to follow
the architectural principles of P4. For example, table factories can
call action factories, which in turn can again call extern factories.

Factory instantiation. A factory declaration, by itself, is not func-
tional. Similarly to P4 externs [44], after factories are declared, they
have to be instantiated (or called). A factory instantiation looks
like all P4 instantiations: factory(args). When a factory is called
with a set of arguments, the O4 compiler substitutes the factory
call for its respective body instance, instantiated with the given
arguments. If a factory is called twice with the same arguments, the
compiler will instantiate two code segments with an identical body.
Analogously to loops, factories are compiled using in-place replace-
ment of their factory declarations with their body instances [17].

3 IMPLEMENTATION
We now introduce the design of the O4 compiler. We implement the
O4 compiler using Racket [10, 27, 28]2, a functional programming
language to write compilers for domain-specific languages (DSLs).

The O4 compiler is composed of a front end and a back end
(cf. Figure 3) [21]. The front end analyzes the input source code (in
O4) and extracts an intermediate representation (IR) by performing
lexical, syntactic, and semantic analysis on the input. The back
end then processes this IR in order to generate the target P4 code.

O4 P4IR

Front End Back End

Tokenizer Parser

Control Back End
Parser Back End

Declaration Back End
Name Back End . . .

Figure 3: The O4 compiler uses a two-stage design.

Front end. The compiler’s front end consists of two parts. First,
a tokenizer processes the input source code (in O4) as a stream
of characters and converts it into a stream of tokens. A token is
just a tuple composed by a string and a label (e.g., a string can be
labeled as an integer, a comment, a keyword, an identifier, or white-
space). Second, a parser takes as input these tokens, and verifies
that their format matches the O4 grammar. The O4 grammar is a
set of language rules in which we define what tokens we expect
in O4, and in what order. As a result, the parser produces a data
structure that represents the O4 code, as a nested tree of function
calls, which can then be expanded by the compiler’s back end. In the
2We leverage Racket to build a proof-of-concept compiler, which can show the benefits
of O4. For production, we would directly modify the actual P4 compiler to support the
proposed higher-level abstractions.

O4 compiler, this representation follows the format of an abstract
syntax tree (AST) [11], where each node in the tree corresponds to
a rule in the O4 grammar. This AST representation returned by the
parser is the intermediate representation (IR) of O4 (cf. Figure 3).

Back end. The compiler’s back end is responsible for expanding
each node in the AST representation. First, it provides bindings to
all nodes, describing how each node should be handled. Then, it
expands the nodes by replacing the function calls by their P4 instan-
tiations. The P4 code is generated in a distributed manner, with each
node generating its own P4 codelets, before they are merged. The
compiler’s back end is divided into multiple modules, each defin-
ing expansions for a number of symbols in the O4 grammar. For
instance, the control back end expands all nodes related to the con-
trol blocks, including factories. The expansion process heavily uti-
lizes Racket’s macro system, reshaping the IR, checking and rewrit-
ing all new O4 primitives to their equivalent P4 representations.

4 EVALUATION
In this section, we evaluate our proposed language primitives on a
set of state-of-the-art P4 program examples. First, we introduce our
setup (§4.1). Second, we evaluate the performance of O4 in terms of
volume reduction (§4.2), verbosity reduction (§4.3), and code-clones
reduction (§4.4). Finally, we evaluate O4’s compilation time (§4.5).

4.1 Test setup
We create a dataset of P4-16 programs, covering a wide range of
use-cases and program sizes. It is composed by programs from the
P4-Learning tutorials [9], which run on the v1model architecture [8],
and programs from the Open Tofino collection [7], which run on
the tna architecture [5]. Before running the experiments, we apply
a consistent formatting to all codebases with a “pretty-printer”. We
compare: (i) the original P4 code (including macros), denoted by
P4*, and (ii) the P4 code with macros expanded (to not mix the
effects of macros and O4), denoted by P4, to their hand-translated
O4 counterparts, resulting in differences Diff* and Diff respectively.

4.2 Volume reduction
We evaluate O4’s voluminosity reduction with respect to P4 by mea-
suring their respective lines of code. Lines of Code (LOC) is a widely-
used metric for code volume that measures the number of physical
lines of code in a file [19]. We compute LOC for the P4 programs
with and without expanding macros, and their O4 counterparts.
We ignore the lines with only whitespaces, comments, and braces.

Our evaluation shows that O4 decreases the LOC by ≈ 42%
and ≈ 44% on average with respect to P4* and P4, respectively. We
also find that the effectiveness of O4 increases with the program
size, and that O4 performs on par with the current state of the art on
more complex higher-level programming languages [29, 35, 40, 41].

Table 1 details O4’s LOC-reduction for all test examples. Inter-
estingly, the macro expansion from P4* to P4 often reduces LOC.
This is the case because macros are often used to define constants.
Directly inserting them reduces the LOC, however it hurts the easy
adaptability of the code. Even in the single case where macros
help (the aes-oneround program), O4 improves the LOC by ≈ 37%.
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LOC

Program P4* P4 O4 Diff.* (%) Diff. (%)

heavy_hitter [4] 127 123 113 -11.0 -8.1
cm_sketch [3] 125 125 89 -28.8 -28.8
loss_detect. [6] 300 285 181 -39.7 -36.5
aes_one. [24] 319 443 201 -37.0 -54.6
conquest [25] 647 630 271 -58.1 -57.0
acc-turbo [32] 1354 1352 270 -80.1 -80.0

Unweighed average -42.4 -44.2
Table 1: O4 reduces program LOC. The first three programs
run on the v1model, the last three on the tna architecture.

We also note that the reduction in LOC seems to increase with
the size of the program. This is interesting, given that real-world
programs running in production tend to have higher LOC counts.

We further analyze this relationship in Figure 4. We see an up-
wards trend in LOC reduction with increasing program size. This be-
havior could be explained by the fact that smaller files contain fewer
repetitions (cf. §4.4), whichmakes our new abstractions less efficient.
However, given that we have only investigated a handful of pro-
grams, we cannot make stronger claims beyond this general trend.

Figure 4: O4 is more beneficial for large programs.

We compare the performance of O4 with other high-level lan-
guages [29, 35, 40, 41]. We do this by gathering their published
LOC measurements and computing their average LOC reduction.

Figure 5: O4 performs on par with state-of-the-art.

We see that O4 performs similarly to state-of-the-art higher-level
languages, only being significantly outperformed by Domino [41]
(cf. Figure 5). These results have to be taken with a grain of salt,
given that not all related work evalutes the same set of programs.

4.3 Verbosity reduction
We measure the verbosity of O4 with the Halstead volume [34].
We observe an average reduction of ≈ 33% (P4*) and ≈ 44% (P4).

TheHalstead volume is ametric thatmeasures program verbosity
as 𝑉 = 𝑁 log2 𝜂 [34], where: 𝑁 is the sum of all the operators and
operands in the program, and 𝜂 is the sum of the distinct operators
and operands in the program. We define the Halstead operators
as the reserved characters and keywords of O4 and P4, respec-
tively. Before computing the Halstead volume on a given program,
we remove all contained whitespaces, comments, and annotations.

Halstead Volume (103)

Program P4* P4 O4 Diff.* (%) Diff. (%)

heavy_hitter [4] 7.0 7.2 6.6 -5.7 -8.3
cm_sketch [3] 5.0 7.3 4.9 -2.0 -32.9
loss_detect. [6] 25.4 25.4 14.1 -44.5 -44.5
aes_one. [24] 16.9 28.5 14.2 -16.0 -50.2
conquest [25] 39.6 40.3 20.1 -49.2 -50.1
acc-turbo [32] 93.3 92.1 20.3 -78.2 -78.0

Unweighed average -32.6 -44.0
Table 2: O4 reduces the Halstead volume of each program.

In contrast to the LOC results (cf. §4.2), the macros in P4* programs
tend to help with verbosity compared to the P4 counterparts. The
macros help the most in the case where they also reduce LOC (aes-
oneround). Nevertheless, all P4* programs are still more verbose
than their O4 counterparts. Without the help of macros (P4), the
difference is even more extreme. As in §4.2, the beneficial effect
of O4 tends to get more emphasized with increasing program size.

4.4 Code-clones reduction
We measure O4’s code-clone reduction with respect to P4* and P4
by using the Levenshtein distance [37]. We find that, on average,
O4 reduces the number of clones by ≈ 56% (P4*) and ≈ 60% (P4).

The Levenshtein distance [37] measures the minimum number
of single-character edits required to make two strings equivalent,
where edits can be insertions, deletions, and substitutions. We iden-
tify clones as every pair of lines with a Levenshtein distance smaller
or equal to threshold 𝜃 . Since we want to minimize the number of
false positives, we set 𝜃 = 1. We remove comments, trim whites-
paces (incl. line breaks), and ignore lines only containing braces.

Usually, the number of clones in a program is given as a percent-
age of the program containing the duplicates (denoted by %LOC).
Accordingly, a 50 %LOC means that half of the lines of the program
are duplicates of (at least) one other line in the same program.

In Table 3, we see that O4 reduces the code clone count for all
test programs. Contrary to the volume and verbosity tests (cf. §4.2
and §4.3), the percentual reduction is similar for small and large pro-
grams. This shows that even for smaller programs, containing fewer
repetitions in absolute terms, O4 is effective in reducing duplicates.
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Levenshtein (%LOC)

Program P4* P4 O4 Diff.* (%) Diff. (%)

heavy_hitter [4] 7.1 7.3 7.1 -0.1 -3.2
cm_sketch [3] 18.4 18.4 4.5 -75.6 -75.6
loss_detect. [6] 32.3 32.6 12.7 -60.7 -61.1
aes_one. [24] 29.2 50.1 10.9 -62.5 -78.2
conquest [25] 52.7 53.8 15.5 -70.6 -71.2
acc-turbo [32] 77.5 77.7 24.4 -68.5 -68.6

Unweighed average -56.3 -59.6
Table 3: O4 reduces a program’s percentage of code clones.

Compilation Time (s)

Program O4 -> P4 P4 -> Tofino

heavy_hitter [4] 1.46 N/A1

cm_sketch [3] 1.37 N/A1

loss_detection [6] 2.01 N/A1

aes_oneround [24] 2.01 131.4
conquest [25] 2.76 129.8
acc-turbo [32] 3.12 46.0

Table 4: O4 keeps a small compilation time.

4.5 Compilation time
Even though compiler efficiency is not a main goal of our work, we
want to show that it is both feasible and practical to compile our
new abstractions to P4. We show that, on average, the O4 compiler
adds only 3.5% to the total compilation time, when compiling an
O4 program to a Tofino target [5]. We measure the O4 and P4
compilation times with UNIX’s time command. All reported times
are averaged over three measurements. We see that the O4 compiler
translates each O4 test program to P4 in a few seconds (cf. Table 4).

1It uses the v1model architecture, and can not be compiled to Tofino.

5 RELATEDWORK

Macro-based languages P4All [35] adds elastic data structures
to P4, to automatically fit P4 programs to hardware. pcube [40] pro-
poses annotation primitives to synchronize state variables across
multiple P4 switches. Both P4All and pcube include language con-
structs similar to O4, such as arrays and loops. However, the pur-
pose of their usage is radically different. O4 is the first work that
focuses squarely on reducing the voluminosity of the P4 language,
empirically proving the benefit of using such language constructs
for reducing P4-program sizes. Furthermore, O4 introduces a new
construct–factories–which was neither used by P4All nor pcube.

Synthesized languages Domino [41] and Chipmunk [31] au-
tomatically compile packet-processing specifications into target-
specific code. Lyra [29] generalizes this idea to allow concurrent
execution of P4 programs across multiple devices. These languages
have different design goals than O4, not trying to extend P4, but di-
rectly replacing it by higher-level program specifications. In doing
so, they abstract the low-level hardware parameters that facilitate
fine-tuning in P4, and increase the language expressivity. Further,
they require users to learn a new language that is different from P4.

Modularization languages Other programming languages such
as 𝜇P4 [43], ClickP4 [45], or Lucid [42] aim at increasing the modu-
larity in P4, often by changing its architecture model. Therefore,
while they may produce concise code, they are orthogonal to O4.

6 CONCLUSION
We presented O4, a lightweight extension of the P4 language that
reduces code voluminosity by just introducing three higher-level
abstractions: arrays, loops, and factories. We show that these basic
abstractions already manage to reduce code volumes, code ver-
bosity, and code duplicates at the level of complex state-of-the-art
languages such as Lyra [29] and P4All [35]. O4 does so while pre-
serving P4 language’s expressivity and fine-tuning capabilities. We
show that O4 only increases the overall compilation timemarginally.
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