
4

2

Princeton University

Albert Gran Alcoz

September 14 2022

sp-pifo.ethz.ch

SP-PIFO: Programmable packet scheduling

 on existing hardware

3

1 1
1

5 4 3

Packet scheduling When and in which order

should we forward

buffered packets?

?

Minimize tail latency

Minimize flow completion times

Enforce max-min fairness

SIGCOMM'92

SIGCOMM'13

NSDI'15

ToN'93

NSDI'18 + many more

Minimize tail latency

Minimize flow completion times

Enforce max-min fairness

FIFO+

LSTF

Prioritize packets with higher queuing time

SRPT

PIAS

pFabric

Prioritize packets from short flows

WRR

(S)FQ

WFQ

Send one packet from each class at a time

+ many more

Is there a universal packet scheduler?

NSDI'16

“You can’t have everything you want,

Generality

Universal packet scheduler

“You can’t have everything you want,

but you can have anything you want”

Flexibility

Customized algorithms

Generality

Universal packet scheduler

“You can’t have everything you want,

but you can have anything you want”

Generality

Universal packet scheduler

Programmable

scheduling

Push-In First-Out Queue (PIFO) is a data structure

that enables programmable packet scheduling
SIGCOMM'16

A PIFO queue…

pushes packets to arbitrary positions,

drains packets from the head

Push-In First-Out Queue (PIFO) is a data structure

that enables programmable packet scheduling

based on their ranks

A PIFO queue…

pushes packets to arbitrary positions,

drains packets from the head

Push-In First-Out Queue (PIFO) is a data structure

that enables programmable packet scheduling

based on their ranks

Sorts packets perfectly by increasing rank order

2 15 4 4 3

PIFO queueIncoming

packets

Outgoing

packets

2 15 4 4 3

PIFO queueIncoming

packets

Outgoing

packets

15 4 4 3 2

PIFO queueIncoming

packets

Outgoing

packets

15 4 4 3 2

PIFO queue Outgoing

packets

Incoming

packets

How exactly?

Push-In First-Out Queue (PIFO) is a data structure

that enables programmable packet scheduling

PIFO queue
fixed

Rank computation
programmable

Programmable Scheduler

f = flow(p)

p.rank = f.size

Implementing a new algorithm simply requires

to adapt the rank computation logic

15 44 3

PIFO queue
fixed

Rank computation
programmable

Programmable Scheduler

f = flow(p)

p.rank = f.size

Implementing a new algorithm simply requires

to adapt the rank computation logic

Incoming
packets

15 44 3

PIFO queue
fixed

Rank computation
programmable

Programmable Scheduler

f = flow(p)

p.rank = f.size

Implementing a new algorithm simply requires

to adapt the rank computation logic

Incoming
packets

2
ranked
packet

15 44 3

15 4 4 3

PIFO queue
fixed

Rank computation
programmable

Programmable Scheduler

f = flow(p)

p.rank = f.size

Implementing a new algorithm simply requires

to adapt the rank computation logic

Incoming
packets

2
ranked
packet

15 4 4 3

PIFO queue
fixed

Rank computation
programmable

Programmable Scheduler

f = flow(p)

p.rank = f.size

Implementing a new algorithm simply requires

to adapt the rank computation logic

Incoming
packets

2

PIFO queue
fixed

Rank computation
programmable

Programmable Scheduler

f = flow(p)

p.rank = f.size

Implementing a new algorithm simply requires

to adapt the rank computation logic

Incoming
packets

15 4 4 3 2

Outgoing
packets

Implementing PIFO queues in hardware is challenging

assumes monotonically increasing ranks

supports ~1k flows and ~10 Gbps

implementing ASICs takes yearsDeployability

Scalability

Flexibility

Existing proposal…

Moreover…

Can we approximate PIFO queues…

at line rate;

at scale;

on existing devices?

Can we approximate PIFO queues…

at line rate;

at scale;

on existing devices?

Yep!

Can we approximate PIFO queues…

at line rate;

at scale;

on existing devices?

Yep!

Introducing SP-PIFO

2

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

Rank computation

SP-PIFO Programmable Scheduler

5 4 4

Mapping strategy Strict-priority queues

f = flow(p)

p.rank = f.size
3

1 2

13

5 4 4

high priority

low

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1 2

3

5 4 4

high priority

low

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1

12

3

5 4 4

high priority

low

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1 12

5 4 4

high priority

low

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

3 1 12

when scanning bottom-up

3

1 2 1

3

1

4
5 4 4

queue mapping policy: enqueues if rank ≥ queue bound i

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1

when scanning bottom-up

3

1 2 1

3

1

4
5 4 4

queue mapping policy: enqueues if rank ≥ queue bound i

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1

rank ≥ queue bound i ?

when scanning bottom-up

3

1 2 1

3

1

4
5 4 4

queue mapping policy: enqueues if rank ≥ queue bound i

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1

rank ≥ queue bound i ?

when scanning bottom-up

3

1 2 1

3

1

4
5 4 4

queue mapping policy: enqueues if rank ≥ queue bound i

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1

rank ≥ queue bound i ?

when scanning bottom-up

3

1 2 1

3

1

4
5 4 4

queue mapping policy: enqueues if rank ≥ queue bound i

SP-PIFO approximates PIFO queues using

strict-priority queues and a dynamic mapping strategy

1

If there are as many queues as ranks,

SP-PIFO is equivalent to PIFO

1434 5 2

1

3

4

2 4 1234
3

44

2

1

exactly one rank per queue

In practice though,

number of ranks >> number of queues

3

1 2 1

3

1

4
5 4

1215 34

3 queues

5 ranks

Different ranks share the same queues

ranks {1,2} and ranks {4,5}

3

1 2 1

3

1

4
5 4

1215 34

We can have

scheduling errors

3

1 2 1

3

1

4
5 4

12151215 34 21

scheduling error
✗

4 3

3

1 2 1

3

1

4
5 4

12151215 34 21

scheduling error
✗

4 3

mapping policy q* = [1,3,4]

2

1

3

1215

We can minimize the number of scheduling errors

by dynamically adapting the mapping policy

34

mapping policy q* = [1,2,3]

2

1 1
1

3
5 4

1215

We can minimize the number of scheduling errors

by dynamically adapting the mapping policy

234

3

mapping policy q* = [1,2,3]

2

1 1
1

3
5 4

1215 15

We can minimize the number of scheduling errors

by dynamically adapting the mapping policy

234

3

✓
PIFO-compliant

1234

mapping policy q* = [1,2,3] ✓

How can we design a mapping strategy

that minimizes scheduling errors?

Adaptation strategy

SP-PIFO:

Implementation

Evaluation

how does it work?

how well does it perform?

how can it be deployed?

1

2

3

Approximating Push-In First-Out Behaviors

Using Strict-Priority Queues

SP-PIFO: Approximating Push-In First-Out Behaviors

Using Strict-Priority Queues

Adaptation strategy

Implementation

Evaluation

how does it work?

how well does it perform?

how can it be deployed?

1

2

3

optimal
mapping policy

expected loss across all ranks
"unpifoness"

Finding an optimal mapping policy is

an optimization problem

optimal
mapping policy

Solving this optimization problem

exactly is intractable unfortunately

unknown packet rank
distributions

expected loss across all ranks
"unpifoness"

We can approximate the solution by turning the problem

into an online empirical risk minimization problem

We can approximate the solution by turning the problem

into an online empirical risk minimization problem

enqueued
 packets

estimated
unpifoness

online
mapping policy

SP-PIFO dynamically adapts the mapping policy

on a per-packet basis, in two phases

SP-PIFO dynamically adapts the mapping policy

on a per-packet basis, in two phases

phase 1

push-up

gradually map higher-priority packets

to higher-priority queues

concentrates scheduling errors

in the highest-priority queue

SP-PIFO dynamically adapts the mapping policy

on a per-packet basis, in two phases

shift lower-priority packets

to lower-priority queues

phase 2

push-down

upon scheduling error…

phase 1

push-up

gradually map higher-priority packets

to higher-priority queues

concentrates scheduling errors

in the highest-priority queue

0

041 32

0

041 32

0

0

4

1 32

0

01 32
4

4

01 32
4

"push-up" increase queue bound i to rank(enqueued packet)

4

01 32
4

4

0

4
1 2 3

4

0

4
1 2

3

4

0

4
1 2 3

4

0

4
1 2

3

4

3

4
1 2

3

4

3

4
1 2

3

4

3

4

3
21

4

3

4

3
1

2

4

3

4

3
1 2

4

3

4

3
1

2

scheduling error of cost 3-2=1

4

2

4

3
1

2

scheduling error of cost 3-2=1

3

2

4

3
1

2

"push-down" decrease all queue bounds by cost

scheduling error of cost 3-2=1

SP-PIFO: Approximating Push-In First-Out Behaviors

Using Strict-Priority Queues

Adaptation strategy

Implementation

Evaluation

how does it work?

how well does it perform?

how can it be deployed?

2

Parser Ingress Pipeline

…

Queue Bound n

Registers

Queue Bound n-1 Queue Bound 1

Metadata

Queue ID

Queue Bound 1 - Rank

Traffic Manager

Priority Queues

We managed to program SP-PIFO on

existing programmable data planes (Intel Tofino)

SP-PIFO: Approximating Push-In First-Out Behaviors

Using Strict-Priority Queues

Adaptation strategy

Implementation

Evaluation

how does it work?

how well does it perform?

how can it be deployed?

3

How well can SP-PIFO approximate

well-known scheduling objectives?

Enforce max-min fairness

Minimize Flow Completion Time

pFabric (8 queues)

Start-Time Fair Queuing (32 queues)

Ranks based on a fluid model

Ranks are set to the remaining flow size

Scheduling
objectives

How well can SP-PIFO approximate

well-known scheduling objectives?

pFabric web-search workloadRealistic
workloads

We use a leaf-spine topology with:

144 servers, 1/4 Gbps links

Topology

Packet-level
simulator

Netbench [SIGCOMM 2017]

 0

 100

 200

 300

 400

 500

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO

DCTCP
TCP

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO

DCTCP
TCP

50

Load

Small flows <100KB Big flows ≥1MB

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

Load

0.2 0.3 0.4 0.5 0.6 0.7 0.8

500

0

100

200

300

400

99th percentile FCT (ms) Average FCT (ms)

SP-PIFO closely approximates pFabric

minimizing FCTs for both small and big flows

PIFO

SP-PIFO

DCTCP

TCP

PIFO

SP-PIFO

DCTCP

TCP

101

103

105

107

≥ 2M 0.2M-1M 80K 50K 30K 20K 10K

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Flow Size

PIFO
AFQ

SP-PIFO
DCTCP

TCP

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ

SP-PIFO
DCTCP

TCP

Flow size

All flows @ Load 0.7

Average FCT (ms)

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load

≥2M

10

103

0
≤1M 80K 50K 30K 20K 10K

Small flows <100KB

Average FCT (ms)

0

SP-PIFO closely approximates fair-queueing algorithms

105

107

PIFO

SP-PIFO
DCTCP

TCP

AFQ
PIFO

SP-PIFO
DCTCP

TCP

AFQ

SP-PIFO: Approximating Push-In First-Out Behaviors

Using Strict-Priority Queues

Adaptation strategy

Implementation

Evaluation

how does it work?

how well does it perform?

how can it be deployed?

Check our paper out for much more info…

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz
ETH Zürich

Alexander Dietmüller
ETH Zürich

Laurent Vanbever
ETH Zürich

Abstract
Push-In First-Out (PIFO) queues are hardware primitives

which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-

PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued

341452

PIFO queue (theoretical)

1234452 123445

SP-PIFO (approximation)

445

312

suboptimal output

strategy A

[1–3]

[4–5]
312445

2

3445

12
strategy B

[1–2]

[3–5]

2
123445

optimal output

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.

NSDI'20

SP-PIFO characterization,
comparison with gradient

Limitations and
future improvements

Hardware evaluation on
Intel Tofino

sp-pifo.ethz.ch

SP-PIFO approximates the behavior of PIFO queues

at line rate, at scale and on existing devices

SP-PIFO dynamically maps packets to queues

so as to minimize scheduling errors

SP-PIFO automatically reacts to traffic variations

without requiring any traffic knowledge

SP-PIFO makes packet scheduling programmable… today!

