QVISOR: Virtualizing Packet Scheduling Policies

pFabric

EDF

WEFQ

QVISOR

7&@_

Albert Gran Alcoz

Laurent Vanbever

HotNets
November 29 2023

ETHzurich

Packet scheduling tries to answer
a very simple question

? What packet to send next

and when?

Countless packet scheduling algorithms
have been proposed

Minimize tail latency FIFO+

Prioritize packets with high slack time

Minimize flow completion times pFabric, PIAS

Prioritize packets from short flows

Enforce fairness RR, WFQ

Send one packet from each class at a time

A universal packet scheduler does not exist

NSDI'16

Universal Packet Scheduling

Radhika Mittal’ Rachit Agarwal’

YUC Berkeley

Abstract

In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that
the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms in realistic network settings. We
then evaluate whether LSTF can be used in practice to
meet various network-wide objectives by looking at pop-
ular performance metrics (such as mean FCT, tail packet
delays, and faimess); we find that LSTF performs com-
parable to the state-of-the-art for each of them. We also
discuss how LSTF can be used in conjunction with ac-
tive queue management schemes (such as CoDel) without
changing the core of the network.

1 Introduction

There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes such
as priority scheduling [31], to more complicated mech-
anisms to achieve fairness [16, 29, 32], to schemes that
help reduce tail latency [15] or flow completion time [7],
and this short list barely scratches the surface of past and

mncec o cersade Tae 0kl v cocrs o) et sl e A e

Sylvia Ratnasamy' Scott Shenker'*

YICSI

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers
a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve dif-
ferent desired performance objectives (such as fairness,
reducing tail latency, minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. !

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance ob-
jectives evolve. Moreover, this would make a strong ar-
gument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [33]; in fact, it was the elo-
quent argument in this paper that caused us to initially ask

the rnectinn ahait immivercalitur)

We should make packet scheduling programmable

SIGCOMM'16

X1v:1602.06045v1 [cs.NI] 19 Feb 2016

Programmable Packet Scheduling

Anirudh Sivaraman”, Suvinay Subramanian’, Anurag Agrawal’, Sharad Chole*, Shang-Tse Chuang’, Tom Edsall®,
Mohammad Alizadeh®, Sachin Katti*, Nick McKeown*, Hari Balakrishnan™
"MIT CSAIL, 'Barefoot Networks, *Cisco Systems, *Stanford University

ABSTRACT

Switches today provide a small set of scheduling algorithms.
While we can tweak scheduling parameters, we cannot mod-
ify algorithmic logic, or add a completely new algorithm,
after the switch has been designed. This paper presents a
design for a programmable packet scheduler, which allows
scheduling algorithms—potentially algorithms that are un-
known today-—to be programmed into a switch without re-
quiring hardware redesign.

Our design builds on the observation that scheduling algo-
rithms make two decisions: in what order to schedule pack-
ets and when to schedule them. Further, in many schedul-
ing algorithms these decisions can be made when packets
are enqueued. We leverage this observation to build a pro-
grammable scheduler using a single abstraction: the push-in
first-out queue (PIFO), a priority queue that maintains the
scheduling order and time for such algorithms.

We show that a programmable scheduler using PIFOs lets
us program a wide variety of scheduling algorithms. We
present a detailed hardware design for this scheduler for a
64-port 10 Gbit/s shared-memory switch with <4% chip area
overhead on a 16-nm standard-cell library. Our design lets
us program many sophisticated algorithms, such as a 5-level
hierarchical scheduler with programmable scheduling algo-
rithms at each level.

1. INTRODUCTION

uler, switch designers would implement scheduling algo-
rithms as programs atop a programmable substrate. Moving
scheduling algorithms into software makes it much easier to
build and verify algorithms in comparison to implementing
the same algorithms as rigid hardware IP.

This paper presents a design for programmable packet
scheduling in line-rate switches. Our design is motivated by
the observation that all scheduling algorithms make two key
decisions: first, in what order should packets be scheduled,
and second, at what time should each packet be scheduled.
Furthermore, in many scheduling algorithms, these two deci-
sions can be made when a packet is enqueued. This observa-
tion was first made in a recent position paper [36]. The same
paper also proposed the push-in first-out queue (PIFO) [15]
abstraction for maintaining the scheduling order or schedul-
ing time for packets, when these can be determined on en-
queue. A PIFO is a priority queue data structure that allows
elements to be pushed into an arbitrary location based on
an element’s rank, but always dequeues elements from the
head.

Building on the PIFO abstraction, this paper presents the
detailed design, implementation, and analysis of feasibil-
ity of a programmable packet scheduler. To program a
PIFO, we develop the notion of a scheduling transaction—
a small program to compute an element’s rank in a PIFO.
We present a rich programming model built using PIFOs
and scheduling transactions (§2) and show how to pro-
gram a diverse set of scheduling algorithms in the model

Push-In First-Out (PIFO) queues enable
programmable packet scheduling

Programmable scheduler

f = flow(p) > 5(4(14|3]|1

p.rank = f.size

PIFO queue
_ J ;

Rank computation
programmable

Programmable scheduling allows
deploying any algorithm

Programmable scheduling allows
deploying any one algorithm

pFabric STFQ

FIFO+ SFQ .
Which one?
SFF LSTF
PIAS WFQ
EDF PQ

RR SRPT ...

Programmable scheduling allows
deploying any one algorithm

pFabric STFQ

FIFO+ SFQ
Just one?
SFF LSTF
PIAS WFQ
EDF PQ

RR SRPT ...

Can we run multiple scheduling algorithms...
simultaneously,

oh the same resources?

Reviewer 2: No, we can't

Different scheduling algorithms

clash with each other

The way in which algorithms clash

changes over time

Naively merging scheduling algorithms

does work
pFabric EDF
Minimize FCTs Maximize satisfied deadlines
Ranks: Remaining flow size Ranks: Flow deadline

e.g., 1000, 10A6 (bytes) e.g., 10, 20, 40 (ms)

Naively merging scheduling algorithms

does

work

pFabric

Minimize FCTs

Ranks: Remaining flow size

e.g., 1000, 10A6 (bytes)

10

20

1016

1000

PIFO

EDF

Maximize satisfied deadlines

Ranks: Flow deadline

e.g., 10, 20, 40 (ms)

Naively merging scheduling algorithms

does work
pFabric EDF
Minimize FCTs Maximize satisfied deadlines
Ranks: Remaining flow size Ranks: Flow deadline
e.g., 1000, 10A6 (bytes) e.g., 10, 20, 40 (ms)

10| (20| [10A6 | {1000 PIFO 10A6 | |1000(|20 |10

Information in packet ranks is relative

We can normalize and quantize policies

to compare them fairly

We can reason about worst-case performance

and update policies at runtime

We can define high-level policies

to decide what to prioritize in case of clash

What would it take to run
multiple scheduling algorithms?

Operator Tenant 1 Tenant 2 Tenant 3

Prioritize tenant 1 pFabric EDF WFQ

What would it take to run

multiple scheduling algorithms?

Inputs

Techniques

Operator

Prioritize tenant 1

Tenant 1 Tenant 2 Tenant 3
pFabric EDF WFQ
> ?
l

Hardware Sc

neduler

Y
ALY

7&@_

What would it take to run

multiple scheduling algorithms?

Inputs

Techniques

Operator

Prioritize tenant 1

Tenant 1 Tenant 2 Tenant 3
pFabric EDF WFQ
> Hypervisor

Hardware Sc

neduler

Y
ALY

7&@_

Introducing...

QVISOR

A packet scheduling
hypervisor

Tenants have the illusion that
their traffic is scheduled by a PIFO queue

Tenants label each packet with a
and the tenant ID

Tenant 1 pFabric Packet sequence

9 /

Tenants have the illusion that
their traffic is scheduled by a PIFO queue

Tenants label each packet with a rank

and the
Tenant 1 pFabric Packet sequence
Tenant 2 EDF THI9|TT (7] Tl

Tenant 3 FQ

Tenants have the illusion that
their traffic is scheduled by a PIFO queue

Operators define their policy
with a composition language

>> Strict priority Policy:
> Best-effort priority Tl >>T2 +T3

+ Sharing

QVISOR takes as input the policies from
the tenants and the operator

Operator Tenant 1 Tenant 2 Tenant 3
T1 >>T2 + T3 pFabric EDF WFQ
g QVISOR

Hardware Scheduler

Packets _

A

QVISOR synthesizes a joint scheduling function

and deploys it to hardware

Packets

Operator

T1 >>T2+T3

Tenant 1 Tenant 2 Tenant 3

pFabric EDF WFQ

| | |

\ 4

QVISOR Synthesizer

QVISOR
Pre-processor

|

Hardware Scheduler

A

QVISOR’s synthesizer generates a set of
rank-transformation functions

Currently, the synthesizer supports
two operation types

Rank normalizations

{ 700, 800,900} — 1{7,8,9}

Rank shifts
{7!8!9}_> {]!2!3}

QVISOR’s synthesizer generates a set of

rank-transformation functions

Operator

T1 >>T2+ T3

Rank-transformation
functions

Tenant 1 Tenant 2 Tenant 3
{7,8,9} {1,3} {1,2}
! ! !

QVISOR Synthesizer

17,8,9]}

'
11,2,3}

l
11,3}
'
14,6}

11,2}
'
157}

QVISOR’s synthesizer generates a set of
rank-transformation functions

Operator Tenant 1 Tenant 2 Tenant 3
T1 >>T2+ T3 {7,8,91} {1, 3} {1,2}
I ' '
QVISOR Synthesizer
:
QVISOR Pre-processor
Rank-transformation T1:{7.89} — {1.2.3}
functions T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8] 3 T1:{7,8,9} — {1,2,3}

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

PIFO

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8 1 3 T1:{7,8,9} — {1,2,3} 3 1 ..

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

PIFO

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8] 3 T1:{7,8,9} — {1,2,3}

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

3 1 2 4 5 PIFO

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8] 3 T1:{7,8,9} — {1,2,3}

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

T1 >>T2 + T3

PIFO 5 4 3

QVISOR

Operator

T1 >>T2+T3

Rank transformation

Tenant 1

Tenant 2 Tenant 3

pFabric

EDF

WFQ

A 4

Specification

A 4

QVISOR
Pre-processor

QVISOR Synthesizer

A 4

Configuration

Hardware Scheduler

4
1 1
T T
| W
(W

7&&_

Check our paper!

nsg.ee.ethz.ch

Evaluation

How to run on
existing devices

Future research

+ more on packet scheduling!

QVISOR: Virtualizing Packet Scheduling Policies

Albert Gran Alcoz, Laurent Vanbever
ETH Ziirich

ABSTRACT

The concept of programmable packet scheduling has been re-
cently introduced, enabling the programming of scheduling
algorithms into existing data planes without requiring new
hardware designs. Notably, several programmable schedulers
have been proposed, which are capable of running directly
on existing commodity switches. Unfortunately, though, their
focus has been limited to single-tenant traffic scheduling: ie.,
scheduling all incoming traffic following one single schedul-
ing policy (e.g., pFabric to minimize flow completion times).

In this paper, we emphagize the fact that today's networks
are heterogeneous: they are shared by multiple tenants, who
run applications with different performance requirements.
As such, we introduce a new research challenge: how can we
extend scheduling programmability to multi-tenant policies?

We envision QVISOR, a scheduling hypervisor that enables
multi-tenant programmable scheduling on existing switches
With QVISOR, tenants program the scheduling policies for
their traffic; operators define how tenants should share the
available resources; and QVISOR does the rest: combines and
deploys the scheduling policies to the underlying hardware.

CCS CONCEPTS
« Networks — Packet scheduling;

KEYWORDS
Packet Scheduling, Programmable Scheduling, Virtualization

ACM Reference Format:
Albert Gran Alcoz, Laurent Vanbever. 2023, QVISOR: Virtualizing

Terart | Tevart 2 Toaar]
Oprivehae s atec or -
T3> 12+4 713 Quaing
Scecicr
™ N
- v
a2 Par aooirg seogt aT Corficurston AM
| Hadano Schooukr
INCOming packet - =
o | o= | 2Of:
i .

Figure 1: QVISOR’s high-level architecture.

1 INTRODUCTION

Packet scheduling has been an active area of research since
the early days of the Internet. However, despite the numerous
scheduling algorithms proposed, only a few have made it
into production. The reason is that deploying a scheduling
algorithm requires dedicated hardware, yet developing new
switch ASICs takes years and costs a lot of money [2].
Recently, programmable scheduling has been proposed,
allowing operators to specify (new) scheduling policies on
high-level abstractions that can be deployed to programmable
hardware [32]. Significantly, some programmable schedulers
can run on existing commodity switches [3, 4, 13, 28, 40, 41].
They do so by engineering the resources of programmable
data planes to tag packets with ranks (Le., priorities) based
on a given policy, and by using the available scheduling

P L

