
SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz
ETH Zürich

Alexander Dietmüller
ETH Zürich

Laurent Vanbever
ETH Zürich

Abstract
Push-In First-Out (PIFO) queues are hardware primitives

which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-
PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

already enqueued

341452

PIFO queue (theoretical)

1234452 123445

SP-PIFO (approximation)

445

312

suboptimal output

strategy A

[1–3]

[4–5]
312445

2

3445

12

strategy B

[1–2]

[3–5]

2
123445

optimal output

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.

Example First, we provide an intuition how SP-PIFO ap-
proximates PIFO behaviors using SP queues in Fig. 1. The ex-
ample illustrates the scheduling behavior of two SP-PIFO sys-
tems which receive the input packet sequence 341452 .
By convention, we write the first packet being enqueued on
the far-right (3) and the last one on the far-left (2). Similarly
to [23], we also consider that lower-rank packets have higher
priority (and use corresponding color codes). The figure il-
lustrates the scheduling decision of each system for the sixth
packet (2), assuming the first 5 have been enqueued already.

A PIFO queue always schedules incoming packets per-
fectly, leading to the sorted output 123445 . In contrast,
the quality of the scheduling of a SP-PIFO scheme depends
on: (i) the number of SP queues available (here, two); and (ii)
the mapping of packet ranks to those queues. Fig. 1 illustrates
two such mapping strategies. Strategy A maps ranks 1–3 (resp.
4–5) to the highest (resp. lowest) SP queue, while Strategy B
maps ranks 1–2 (resp. 3–5) to the highest (resp. lowest) SP
queue. We see that Strategy B is capable of perfectly sorting
the input sequence, i.e. it behaves like a perfect PIFO queue.
In contrast, Strategy A leads to sub-optimal packet inversions,
e.g. 1 is incorrectly scheduled after 3 .

Insights The key challenge in SP-PIFO is to design adapta-
tion strategies that can: (i) closely approximate PIFO behav-
ior; and (ii) be implemented in programmable data planes.
These are hard challenges as the best mapping strategy de-
pends on the traffic mix and the actual ranks being enqueued,
both of which can change on a per-packet basis.

SP-PIFO approximates the best mapping strategy by dy-
namically shifting the ranks mapped to each queue to reduce
the scheduling mistakes it observes in real time. We show
that SP-PIFO’s adaptation strategy achieves almost the same
performance as provably-correct adaptation strategies while
being implementable in programmable data planes.

Performance We use SP-PIFO to implement a wide variety
of scheduling objectives ranging from minimizing flow com-
pletion times to achieving max-min fairness. For all cases,
we show that SP-PIFO achieves performance on-par with the
state-of-the-art. We also demonstrate that SP-PIFO runs at
line rate on existing programmable hardware.

Contributions Our main contributions are:

• A novel approach for approximating PIFO queues using
strict-priority queues (§3).

• An adaptation algorithm which dynamically adapts the
queue mapping according to the network conditions,
closely-approximating an optimal scheme (§4).

• An implementation1 of SP-PIFO in Java and P4 (§5).

• A comprehensive evaluation showing SP-PIFO effec-
tiveness in approximating perfect PIFO behavior with as
little as 8 queues and on actual hardware switches (§6).

1Available at https://github.com/nsg-ethz/sp-pifo

2 1

4 4 3

5

341452 123445

Queue 1

Queue 2

Queue n

0

3

5

queue bounds
qqq = {0,3,5}

Mapping

Adaptation

Strategy #1
Gradient Descent

(Section 3)

Strategy #2
SP-PIFO

(Section 4)

Priority
Queuing

Incoming packets Outgoing packets

decision
r ≥ qi?

(bottom-up)

[
q1 = 0, q2 = 3, q3 = 5

]
Figure 2: Overview of SP-PIFO data-plane pipeline.

2 Overview

In this section, we provide an informal overview of how SP-
PIFO manages to closely approximate PIFO behaviors. At a
high level, SP-PIFO is a priority-queuing scheduling disci-
pline (see Fig. 2) which maps incoming packets to n priority
queues. SP-PIFO assumes that packets are tagged with a rank
indicating the intended scheduling order, with lower ranks be-
ing preferred over higher ones. Packets enqueued in a queue
are scheduled according to their order of arrival (i.e., First-In
First-Out), after all packets enqueued in any higher-priority
queue have been scheduled. Unlike classical priority-queuing
disciplines [20], SP-PIFO dynamically adapts the mapping
between the packet ranks and the priority queues according
to the observed network conditions. In particular, SP-PIFO
adapts the mapping so as to minimize the scheduling “unpi-
foness”, that is, the number of times a higher-rank packet is
scheduled before an enqueued lower-rank packet. We refer to
such scheduling mistakes as inversions.

Mapping SP-PIFO maps each incoming packet to queues
according to the queue bounds. These queue bounds iden-
tify, for each queue i, the smallest packet rank that can be
enqueued. Whenever a packet is received, SP-PIFO scans
the queue bounds bottom-up, starting from the lowest-priority
queue, and enqueues the packet in the first queue with a bound
smaller or equal to the packet rank. Given a packet with rank
r ∈ Z≥0 and n priority queues, let qqq be the vector of queue
bounds (q1, · · · ,qn) ∈ Zn such that 0 ≤ q1 ≤ q2 ≤ ·· · ≤ qn.
For instance, consider a vector qqq = {0,3,5} indicating the
bounds of 3 priority queues, with 0 (resp. 5) indicating the
bound of the highest- (resp. lowest-) priority queue. Given qqq,
SP-PIFO enqueues packets with rank 2 in the first (highest-
priority) queue, packets with rank 3 in the second queue and
packets with rank 10 in the third (lowest-priority) queue.

Adaptation “Unpifoness” can be minimized across multi-
ple packets, e.g. by monitoring the rank distribution over
periodic time windows and adapting the bounds through a
gradient descent, or on a per-packet basis (see Fig. 2). De-

https://github.com/nsg-ethz/sp-pifo

pending on the characteristics of the rank distribution, the
first strategy can provably converge to the optimal mapping.
Unfortunately, its requirements exceed the capabilities of ex-
isting programmable data planes. SP-PIFO addresses these
two limitations: it works for any rank distribution, on existing
hardware. SP-PIFO dynamically adapts q such that the re-
sulting scheduling closely approximates an ideal PIFO queue,
minimizing the amount of observed inversions by dynamically
shifting the ranks mapped to each queue. SP-PIFO operates
online, without prior knowledge of the incoming packet ranks.

SP-PIFO’s adaptation mechanism consists of two stages:
a push-up stage where future low-rank (i.e., high-priority)
packets are pushed to higher-priority queues; and a push-
down stage where future high-rank (i.e., low-priority) packets
are pushed down to lower queues.

Stage 1: Push-up Whenever SP-PIFO enqueues a packet,
it updates the corresponding queue bound to the rank of
the enqueued packet. Doing so, SP-PIFO aims at ensuring
that future lower-ranked packets will not be enqueued in the
same queue, but in a more preferred one. Intuitively, SP-PIFO
“pushes up” packets with low ranks to highest-priority queues,
where they will be drained first. Of course, as the number of
queues is finite—and often, much smaller than the number of
ranks—this is not always possible, leading to inversions.

Stage 2: Push-down Whenever SP-PIFO detects an inver-
sion in the highest-priority queue (i.e., the packet rank is
smaller than the highest-priority queue bound), it decreases
the queue bound of all queues. Doing so, SP-PIFO en-
sures that future higher-rank packets will be enqueued in
lower-priority queues. Intuitively, after an inversion, SP-PIFO
“pushes down” packets with high ranks to the lower-priority
queues in order to prevent them from causing inversions in the
highest-priority queue. SP-PIFO decreases the queue bounds
according to the magnitude of the inversion, i.e. the difference
between the packet rank and the corresponding queue bound:
the bigger the inversion, the more ranks are pushed down.

Example Fig. 3 illustrates the execution of SP-PIFO with two
priority queues when receiving 3414521 . Without loss
of generality, we consider that the queue bounds are initialized
to 0. SP-PIFO enqueues the first packet (3) in the lowest-
priority queue and updates its queue bound to 3. Likewise,
SP-PIFO also enqueues the second packet, 4 , in the lowest-
priority queue. As its rank (4) is higher than the queue bound
(3), it then updates the queue bound to 4.

The same process is applied to the subsequent packets until
the second 1 is encountered, creating an inversion (grayed
area in Fig. 3). Indeed, SP-PIFO enqueues 1 in the highest-
priority queue after having enqueued 2 . Once the inversion is
detected, SP-PIFO adapts the queue bounds to 1 and 5−1= 4,
respectively. Observe that if 1 and 2 keep arriving, the bound
of the lowest-priority queue will decrease, eventually reach-
ing 2. At this point, future 1 will not experience inversions
anymore as they will have a dedicated queue.

Reacting to inversions

0

0
3

3

0

3
4

34

0

4
1

34

11

4
4

344

11

4
5

3445

11

5
2

3445

122

5
1

3445

1211

5−1 = 4

3414521

Incoming packets

Figure 3: SP-PIFO mapping and adaptation mechanisms.

3 SP-PIFO design

In this section, we describe the theoretical basis supporting the
design of SP-PIFO. We first phrase the problem of finding the
optimal queue bounds as an empirical risk minimization prob-
lem in which a loss function—how “unpifo” the current map-
ping is—is minimized (§3.1). We then develop an algorithm
based on gradient descent which provably converges to the
optimal bounds for stable rank distributions (§3.2). We show
how the convergence requirements make the algorithm im-
practical (§3.3). In the following, we present SP-PIFO which
relaxes the requirements at the benefit of practicality (§4).

3.1 Problem statement
Let U : Rn×R≥0→ R≥0 be a loss function such that U(qqq,r)
quantifies the approximation error of scheduling a packet with
rank r based on queue bounds qqq compared to an ideal PIFO
queue. Intuitively, a smaller loss equals a better approximation.
Note that U stands for unpifoness.

The adaptation goal is to find the optimal queue bounds qqq∗

that minimize the expected loss for all possible ranks. Let Q
be the space of all valid bound vectors and R the distribution
of packet ranks, then the optimal queue bounds qqq∗ are:

qqq∗ = argmin
qqq∈Q

E
r∼R

[U(qqq,r)] (1)

Finding qqq∗ directly is intractable though. Indeed, evaluating
the expected loss U is impossible since the distribution of
packet ranks R is unknown. We address this problem by
considering the empirical loss Uemp observed over a set D
of i.i.d. rank samples. Doing so, we phrase the problem of
finding qqq∗ as an empirical risk minimization (ERM) problem:

qqq∗ = argmin
qqq∈Q

1
|D| ∑

r∈D
Uemp(D,qqq,r) (2)

Evaluating empirical losses For a given rank r, we mea-
sure the empirical loss Uemp as the expected number of inver-
sions that r would encounter, if the rank distribution D was
scheduled given the queue bounds qqq, weighted by the cost
that each inversion would cause to the system performance.
This cost can be just a constant value, if all inversions are
treated the same, or it can measure the magnitude of the in-
version (i.e., how big is the difference between ranks causing
it). Since r receives inversions only from higher ranks in the
distribution, Uemp can be rewritten as:

Uemp(D,qqq,r) =
1
|D| ∑

r′∈D
r′>r

costqqq(r′,r) (3)

Having formulated the adaptation goal as an empirical risk
minimization, we aim to solve it by analyzing how changes in
qqq influence the empirical risk, and trying to design an iterative
algorithm capable of converging to the minimal risk.

3.2 Gradient-based adaptation algorithm

We first introduce a greedy, gradient-based algorithm, which
provably converges to the optimal queue bounds qqq∗ provided
that the rank distribution stays constant. The algorithm builds
upon the fact that inversions cannot occur between ranks
mapped to different priority queues. This allows to instantiate
the empirical risk minimization in eq. 2 at a queue level by
simply adding the individual losses of each queue. Letting
U(qi) be the loss function corresponding to the queue with
bound qi, this is:

qqq∗ = argmin
qqq∈Q

∑
qi∈qqq

U(qi) (4)

Letting pD(r) and pD(r′) be the empirical probability of
ranks r and r′, respectively, both mapped to the queue with
bound qi, we can define the unpifoness of the queue as:

U(qi) = ∑
qi≤r<qi+1
r<r′<qi+1

pD(r) · pD(r′) · cost(r′,r) (5)

Overview Considering this problem instantiation, the greedy
algorithm first computes the rank distribution over a set of k
packets before minimizing the expected per-queue unpifoness
by incrementing (resp. decrementing) the queue bounds.
Specifically, after processing the k-th packet, the greedy algo-
rithm selects, for each queue, the bound that most decreases
the overall system unpifoness. Although comparing the perfor-
mance of all bound combinations is not possible, we introduce
an efficient computation mechanism that allows to prune the
search space while preserving convergence. We prove the
optimality of the algorithm in Appendix A.

Incoming packets

adaptation window (k = 7)

3414512.

3112

445

112

3445

341412

5

unpifoness = 8α

improving allocation
8α < 9α

worsening allocation
25α > 9α

current allocation

unpifoness = 25α

unpifoness = 9α

1

4

1

3

1

5

[q1 = 1,q2 = 3]
(updated bounds)

r1 r2 r3 r4 r5
0

1/7

2/7

packet rank distribution

Figure 4: The gradient-based algorithm greedily minimizes
the expected unpifoness.

Example We illustrate the execution of the algorithm in
Fig. 4. We assume a system with two priority queues and
assume that the packet sequence 3414512 is received
over and over again. We set the adaptation window k to 7
packets. We initialize the queue bounds to 1 and 4.

The algorithm starts by computing the observed rank dis-
tribution after receiving the 7-th packet. Here, it estimates the
probability of receiving a packet of rank 1 as p(1) = 2/7. Sim-
ilarly, p(2) = 1/7, p(3) = 1/7, p(4) = 2/7 and p(5) = 1/7.
It then computes the expected unpifoness that this distribu-
tion would have generated with the current queue bounds
(eq. 3). For the higher-priority queue, this is U1 = p(1) · p(2) ·
cost(2,1)+ p(1) · p(3) ·cost(3,1)+ p(2) · p(3) ·cost(3,2) =
(2/7 ·1/7) ·(2−1)+(2/7 ·1/7) ·(3−1)+(1/7 ·1/7) ·(3−2).
This equation can be simplified to U1 = 7α where α =
(1/7 · 1/7). Similarly, U2 = p(4) · p(5) · cost(5,4) = 2α,
adding up a total of U = 9α.

Next, the algorithm compares the expected unpifoness that
would be obtained if the queue bound was incremented (gradi-
ent up) or decremented (gradient down) and adapts the queue
bound in the direction resulting in the biggest decrease of
unpifoness.

Gradient up Incrementing q2 from 4 to 5 means that only
rank {5} would be mapped to the lower-priority queue. The
resulting unpifoness is U = 25α. The higher unpifoness (25α

instead of 9α) indicates that, by incrementing q2, the system
gets further away from the PIFO behavior. Note that the in-
crease in unpifoness comes from the higher-priority queue as
rank {5} gets an exclusive queue.

Gradient down In contrast, the system unpifoness reduces
from 9α to 8α when decrementing q2 from 4 to 3. Indeed,
U1 = p(1) · p(2) · cost(2,1) = 2α, and U2 = p(3) · p(4) ·
cost(4,3)+ p(3) · p(5) ·cost(5,3)+ p(4) · p(5) ·cost(5,4) =
6α, adding up to U = 8α. As such, the adaptation mechanism
updates the queue bound: q2 = 3.

The above process repeats every 7-th packet, estimating the
rank distribution before greedily adapting the queue bounds.

3.3 Limitations

While the adaptation algorithm described above provably con-
verges to the optimal mapping (see A.1), two key limitations
make it impractical. First, it is not currently implementable
in existing programmable data planes due to resource con-
straints. Second, the algorithm only converges for stable rank
distributions, which is rarely the case, and its convergence
time directly depends on the distribution size, which can be
large. We explain how to overcome these limitations in §4.

Hardware restrictions Monitoring the rank distributions
over periodic adaptation windows requires a high amount
of memory and computational resources, both of which are
scarce in current programmable data planes. In particular,
implementing the greedy algorithm in hardware (see A.2)
requires to: (i) store the value of each queue bound; (ii) com-
pute the current unpifoness; and (iii) estimate the unpifoness
obtained by incrementing or decrementing each queue bound.
As we explain in A.3, the amount of resources required to run
the algorithm on a practical number of queues (8 queues or
more) exceeds the capabilities of current switch designs.

Convergence In A.4, we study the performance of the
gradient-based algorithm and analyze the effects on conver-
gence when the adaptation window, the number of queues,
and the rank range is modified. We show that, for the algo-
rithm to converge, the rank distribution needs to be stable in
time. However, this is unrealistic in most practical scenarios
where not only the rank distribution is unknown but also varies
through time (e.g., virtual times in fair-queuing schemes).

4 Our approach: SP-PIFO

We now present SP-PIFO, an approximation of the gradient-
based adaptation algorithm (§3.2) which is implementable in
existing data planes and rapidly adapts to varying rank distri-
butions. SP-PIFO substitutes the gradient computation by a
simpler adaptation process which minimizes the probability
of inversions per packet, rather than per k-packets.

In the following, we first show how to instantiate the em-
pirical risk minimization problem (eq. 2) at the packet level
and describe how SP-PIFO solves it (§4.1). We then system-
atically characterize how SP-PIFO handles inversions (§4.2).

4.1 Per-packet adaptation algorithm
The SP-PIFO adaptation algorithm (alg. 1) is based on two
competing stages that act in opposing direction. We show that
this combination manages to strike a balance in the number of
inversions observed by all queues, resulting in a good PIFO
approximation. In the following, we first show how to phrase
the empirical risk minimization problem at the per-packet
level before describing both mechanisms.

Problem statement In contrast to §3.2, we aim at minimiz-
ing the cost generated by scheduling each individual packet.
Formally, we aim to find the optimal bound vector qqq∗ that
minimizes the unpifoness for all enqueued packets P :

qqq∗ = argmin
qqq∈Q

U(P ,qqq) (6)

Let r(p) be the rank of a given packet p ∈ P , and let rp(p, qqq)
be the rank perceived as a result of the mapping decision,
which is identified as the highest rank amongst those of pack-
ets sharing the same queue. Considering that the objective for
the bound vector qqq is to perfectly approximate PIFO behav-
iors, we can estimate the unpifoness at enqueue as:

U(P ,qqq) = ∑
p∈P

costqqq(p) (7)

where
costqqq(p) = rp(p, qqq)− r(p) (8)

Computing the rank perceived requires determining the
highest rank among all packets sharing the queue at any given
moment. This not only requires to keep track of all ranks in
each queue, but also selecting the highest, which is computa-
tionally expensive. Since one of the premises of SP-PIFO is
to be implementable in the data plane, we relax this condition
and keep track of only a single parameter qi per queue. These
parameters, the bounds qqq, simplify the cost estimation of a
potential mapping decision at enqueue.

We discuss how we update these parameters as well as the
tradeoffs of this relaxation below.

Stage 1: “Push-up” The first stage increases qqq to minimize
the unpifoness of the queue to which the incoming packet is
mapped. Specifically, the mapping process scans the queues
bottom-up and enqueues the packet in the first queue that
satisfies r(p) ≥ qi. It then increases qi to the rank of the
enqueued packet. By doing so, the mechanism minimizes (i)
the cost for each packet p (at enqueue time); as well as (ii)
the impact that this decision may have on future packets.

This mapping process guarantees a zero-cost packet alloca-
tion for all packets within a queue. That is, as we effectively
keep track of the highest rank per queue, we ensure that no
packet with lower rank is mapped to the same queue. This
holds for all queues except for the highest-priority queue.
There, packets are enqueued even if r(p)< q1.

Algorithm 1 SP-PIFO adaptation algorithm

Require: An incoming packet with rank r.
1: procedure PUSH-UP
2: for qi : q1 to qn, qi ∈ qqq do . Scan bottom-up
3: if r ≥ qi or i = 1 then
4: qi← r . Update queue bound
5: ENQUEUE(r, i) . Select queue
6: procedure PUSH-DOWN
7: if r < q1 then . Detect inversion
8: cost← qi− r . Compute cost inversion
9: for q j ∈ qqq, j 6= i do

10: q j← q j− cost . Adapt queue bounds

Stage 2: “Push-down” As illustrated in §2, the first stage
can lead to inversions in the highest-priority queue. The sec-
ond stage aims at counteracting that effect by reducing the
number of ranks enqueued in the highest-priority queue. This
is achieved by decreasing all queue bounds by some given
amount. Different decreasing strategies exist. In SP-PIFO,
we decrease each qi proportionally to the cost of the inver-
sion. That is, we decrease all queue bounds by q1 − r(p).
This choice is both (i) practical, as it can be efficiently im-
plemented in hardware; and (ii) functional, as it results in a
reasonable balance between inversions in the highest-priority
queue and shifts in the other queues. Below, we provide some
insights on the nature of this balance and why it is important
for a good PIFO approximation. We simulate the performance
of different decreasing strategies in §4.2.

Tradeoffs Unlike the gradient-based algorithm (§3.2), SP-
PIFO may converge to a sub-optimal solution exhibiting inver-
sions. One can distinguish three sources of inversions. First,
there can be inversions in the highest-priority queue. These
inversions are proportional to the probability of observing
packets with rank r(p)< q1. Second, after the “push-down”
stage, the queue bounds do not necessarily match the highest
rank packet in the queue anymore. This may lead to inversions
for future packets and is proportional to how often, and how
much, queue bounds are decreased. Finally, because only the
highest rank in a queue is tracked, it can happen that a packet
is enqueued in a higher-priority queue because r(p) < qi,
while r(p) is greater than the lowest rank in queue i, caus-
ing an inversion. This is proportional to the number of ranks
between the minimum rank in the queue and the queue bound.

Average-case analysis The exact amount of inversions intro-
duced by each of these three sources is hard to quantify as
queue bounds are shifting with (almost) every packet. Yet, on
average, we can show that the dynamics of SP-PIFO coun-
teract all three sources. On the one hand, it equalizes the
probability of r(p) < q1 with the probability of packets be-
ing mapped to a specific queue, striking a balance between
inversions because there are no higher-priority queues, and in-

versions because of queue bound mismatch. Furthermore, for
this equalizing, the probabilities of specific ranks are weighted
more if they are far away from queue bounds, which keeps
queues more compact to reduce the chance of overlap.

As a result, on average workloads, SP-PIFO provides a
good approximation, and can adapt to arbitrary rank distribu-
tions. Nevertheless, there are adversarial packet orderings cir-
cumventing these mechanisms, resulting in large unpifoness
(§7). We provide the theoretical foundations for these state-
ments in Appendix B and verify them by simulation in §4.2.

4.2 SP-PIFO analysis
We now dive deeper into understanding SP-PIFO using
switch-level simulations. We compare its behavior to that of
an ideal PIFO queue, along with several well-known schedul-
ing schemes (e.g., FIFO). We first describe the high-level
behavior using a uniform rank distribution (§4.2.1), before
systematically exploring the design space (§4.2.2).

Methodology We implement various scheduling schemes
(including SP-PIFO, FIFO, and our gradient-based algorithm)
in Netbench [3, 15], a packet-level simulator. We analyze the
performance of a single switch scheduling 1500 flows of 1MB
(fixed), which start according to a Poisson distribution. We run
the simulation during one second. We limit the transmission
through an output link of 10 Gbps which corresponds to an
average port utilization of 75%. We measure the number of
inversions generated by each rank at dequeue. Whenever a
packet is polled, we check whether its rank is higher than any
of the ranks remaining at any of the queues. When this occurs,
we count an inversion to the rank generating it (i.e., the one
of the polled packet), making sure that inversions are counted
at most once per polled-packet, regardless of the number of
packets affected by it.

We compare four scheduling schemes: (i) SP-PIFO (§4);
(ii) the gradient-based algorithm (§3, see implementation in
A.2); (iii) a strict-priority scheme fixed to the optimal mapping
for a uniform distribution (i.e., bounds distributed uniformly
across ranks, qi = 12i); and (vi) a FIFO queue, as baseline.
All strict-priority schemes (SP schemes) use 8 queues of 10
packets, while the FIFO queue has a capacity of 80 packets.

4.2.1 Characterizing general SP-PIFO behavior

We start by showcasing how SP-PIFO handles inversions by
analyzing its behavior under a uniform rank distribution. That
is, we tag the packets with a rank drawn from a uniform
distribution (between 0 to 100).

Fig. 5a illustrates the number of inversions generated by
each rank for the different SP schemes in comparison with
FIFO. We see that a FIFO queue generates a uniform number
of inversions across all ranks (since they all share the same
queue). In contrast, SP schemes (all the others in Fig. 5a) gen-
erate a progressively-higher number of inversions as rank val-

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Fixed Queue Bounds
Greedy (optimal)

SP-PIFO
FIFO

(a) Uniform 8 queues

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Fixed Queue Bounds
Greedy (optimal)

SP-PIFO
FIFO

(b) Uniform 32 queues

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

SP-PIFO Queue Bound
SP-PIFO Cost
SP-PIFO Rank

SP-PIFO 1

(c) Adaptation strategies

0

10

20

30

40

50

 20 30 40 50 60 70 80 90

N
um

be
r o

f I
nv

er
si

on
s

(·1
05)

Utilization (%)

Greedy (optimal)
SP-PIFO

FIFO

(d) Utilization

Figure 5: SP-PIFO performance (uniform rank distribution).

ues increase. This occurs as higher ranks are mapped to lower-
priority queues, which drain packets less frequently. Since
those queues have a higher occupancy on average, the poten-
tial number of inversions increases. This behavior, however,
is not preserved for the lowest-priority queue (the far-right
peak in the graph) as a result of starvation. Despite having the
largest average queue size, this queue drains fewer packets
and, as such, the number of inversions it sees decreases.

For the fixed-queue bounds, we see that a saw-shape delin-
eates the inversions observed across ranks in different queues,
reaching the x axis for the ranks corresponding to the queue
bounds. Indeed, the lowest rank within each queue never gen-
erates inversions since the other ranks sharing the queue have
higher values. The second-lowest rank can only generate in-
versions to the lowest, and the progression continues until the
highest rank, which can generate inversions to all the lower
ranks sharing the queue.

When considering the gradient-based greedy algorithm
(which is optimal) and SP-PIFO, we see that the saw-shape
vanishes. This is because queue bounds are not fixed any-
more and successive packets of a given rank can be mapped
to multiple queues. In particular, since the rank distribution
sampled at each adaptation window varies, the queue-bound
design in the gradient-based algorithm oscillates. In SP-PIFO,
as a higher variability is produced, the number of inversions
delineates the envelope of the optimal schemes.

4.2.2 Characterizing SP-PIFO design space

We now systematically explore the design space of SP-PIFO
along four dimensions: the number of queues, the adaptation
strategy when encountering an inversion (in the push-down
stage, §4.1), the utilization levels, and the rank distributions.

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(a) Exponential

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(b) Inverse exponential

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(c) Poisson

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(d) Convex

Figure 6: SP-PIFO performance (alternative distributions).

SP-PIFO manages to approximate the optimal algorithms
in all rank distributions and utilization levels, with as little
as 8 queues. The best performances are obtained under low
utilizations and with 32 queues.

Number of queues (Fig. 5b) When using only 8 queues,
SP-PIFO is already within ∼20–29% of the gradient-descent
algorithm and the optimal mapping. With 32 queues, it gets
even closer, producing only ∼22% more inversions than the
optimal and achieving on-par behavior to the gradient-descent
algorithm. Overall, it improves FIFO performance ∼3.3×
(resp. ∼10×) when only 8 (resp. 32) queues are used.

Push-down strategies (Fig. 5c) We evaluate four adaptation
strategies for decreasing each queue bound in the push-down
stage: (i) to the value of the next-higher queue bound (“Queue
Bound”); (ii) by the cost of the inversion (q1− r(p), the strat-
egy in SP-PIFO, “Cost”); (iii) by the rank of the packet caus-
ing the inversion (“Rank”); and (iv) by 1 (“1”).

The best performance is obtained for “Queue Bound”,
which produces ∼15% more inversions than the gradient-
based algorithm. This is followed by “Cost” and “Rank”, with
∼22%, and “1” with ∼33%. While the three first techniques
produce similar results, the “push down” effect of “1” is too
small to balance the “push up” stage, resulting in many inver-
sions. While “Queue Bound” is marginally better than “Cost”,
it is more costly to implement, thus SP-PIFO uses the latter.

Utilization (Fig. 5d) SP-PIFO performance is close to the
gradient-based algorithm. For utilizations below 60%, SP-
PIFO is on-par with the gradient-based algorithm. The number
of inversions slightly increases at higher utilizations: 26% and
38% for 80% and 90%.

Rank distributions (Fig. 6) We analyze the performance
of SP-PIFO under four alternative rank distributions: expo-
nential, inverse exponential, Poisson and convex. SP-PIFO
performs better than FIFO and is close to the gradient-based
algorithm for each distribution.

The performance of SP-PIFO is better for rank distributions
in which more ranks appear in higher-priority queues. The
number of inversions for SP-PIFO in convex and exponential
distributions is only∼21–24% higher than the gradient-based
algorithm. The corresponding numbers for Poisson and in-
verse exponential amount to ∼49–55%. In all cases, SP-PIFO
performs between ∼2.5–3.5× better than a FIFO, with only
8 priority queues.

5 Implementation

In this section, we describe our implementation of SP-PIFO
in P416 [7] and P414.2 Our implementation follows the algo-
rithm described in §4 and spans 190 (P416) and 735 (P414)
lines of code. It performs three main operations: (i) comput-
ing/extracting the rank from a packet header; (ii) mapping
packets to queues (§2); and (iii) updating the queue bounds.

Rank computation We implemented and tested multiple rank
computation functions such as LSTF [17], STFQ [23], and
FIFO+ [9] in P416. We note that the reduced memory usage in
SP-PIFO leaves room to compute ranks directly on the switch.
That said, most ranking algorithms can directly be computed
by the end-hosts [17].

Mapping We store the queue-bound values in individual reg-
isters and access them sequentially using an if-else condi-
tional tree. For each register access, we leverage the ALU to
perform three operations: (i) we read the queue-bound value
and compare it to the packet rank; (ii) we notify the queue-
selection result to the control flow using a single-bit metadata;
and (iii) we update the queue-bound value to the packet rank
if the queue is selected. In the ALU of the last queue, instead
of transferring the mapping decision to the control flow using
a binary metadata, we first check whether an inversion has
occurred before transferring the potential inversion cost using
larger metadata.

Adaptation When the mapping process detects an inversion,
we need to update all queue bounds. While accessing multiple
registers is not restricted by the P4 specification [10], current
architectures do not support it (among others, to guarantee
line rate). We address this problem by relying on the packet-
resubmission primitive to access the queue bounds a second
time and update them with the measured inversion cost. While
resubmission can possibly break the line-rate guarantees, we
only require it occasionally, upon inversions.

2The P414 code is used for running SP-PIFO on the Tofino platform [2].

Memory requirements Our implementation only requires
n registers where n is the number of queues. We leverage n
ALUs to access registers during the mapping process and n−1
additional ALUs to update registers from the resubmission
pipeline in case of inversions. We use n−1 bits of metadata to
access the mapping results of non-top-priority queues in their
respective ALUs from the control flow (i.e., a single 1-bit
metadata field for each queue) and an extra 32-bit field for the
top-priority queue to (potentially) transfer the inversion cost.

Regarding the number of stages, our implementation uses
more stages than the number of queues in order to perform the
sequential access to queue-bound registers during the map-
ping process. Note that alternative designs would be possible
but would come at the expense of line-rate guarantees.

6 Evaluation

We now evaluate SP-PIFO performance and practicality. We
first use packet-level simulations to evaluate how SP-PIFO ap-
proximates well-known scheduling objectives under realistic
traffic workloads (§6.1). We then evaluate SP-PIFO schedul-
ing performance when deployed on hardware switches (§6.2).

6.1 Performance analysis

We consider two scheduling objectives: (i) minimizing Flow
Completion Times (FCTs); and (ii) enforcing fairness. We
consider that ranks are set at the end hosts for the former
objective and computed in the switch for the latter. For both
objectives, we show that SP-PIFO scheduling capabilities
achieve near-optimal performance, with as little as 8 queues.

Methodology We integrated SP-PIFO in Netbench [3, 15],
a packet-level simulator. Similar to [4], we use a leaf-spine
topology with 144 servers connected through 9 leaf and 4
spine switches. We set the access and leaf-spine links to
1Gbps and 4Gbps, respectively. This results in a theoretical
end-to-end Round-Trip-Time (RTT) of 32.12µs when cross-
ing the spine (4 hops) and 26µs under the leaf (2 hops). We
generate traffic flows following two widely-used heavy-tailed
workloads: pFabric web application and data mining [4]. Flow
arrivals are Poisson-distributed and we adapt their starting
rates to achieve different utilization levels. We use ECMP and
draw source-destination pairs uniformly at random.

6.1.1 Minimizing Flow Completion Times

Rank definition & benchmarks We minimize FCTs by
implementing the pFabric algorithm [4] which sets the packet
ranks according to their remaining flow sizes. Specifically, we
compare pFabric performance when run on top of PIFO and
SP-PIFO. We also analyze TCP NewReno with traditional
drop-tail queues and DCTCP with ECN-marking drop-tail

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(a) (0,100KB): Average

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(b) (0,100KB): 99th percentile

 0

 100

 200

 300

 400

 500

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(c) [1MB,∞): Average

Figure 7: pFabric: FCT statistics across different flow sizes in data mining workload.

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(a) (0,100KB): Average

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(b) (0,100KB): 99th percentile

 0

 100

 200

 300

 400

 500

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(c) [1MB,∞): Average

Figure 8: pFabric: FCT statistics across different flow sizes in web search workload.

queues. Our pFabric implementation does not consider starva-
tion prevention. As suggested in [4], we approximate pFabric
rate control by using standard TCP with a retransmission
time-out of 3 RTTs, balancing the difference in RTOs be-
tween schemes with the proportional queue size. That is, we
use an RTO of 96µs and 8 queues×10 packets for SP-PIFO
(resp. 1 queue×80 packets in PIFO), and an RTO of 300µs
and 146KB drop-tail queues for both TCP and DCTCP, with
ECN marking at 14.6KB, i.e. ∼10 packets.

Summary Fig. 7 and Fig. 8 depict the average and 99th per-
centile FCTs of large (≥ 1MB) and small flows (< 100KB)
for both data mining and web search workloads. We see that
SP-PIFO achieves close-to-PIFO performance in both dis-
tributions. When comparing performance across flow sizes,
we see that SP-PIFO achieves better performance for small
flows. This is not surprising since those flows are mapped into
higher-priority queues. As discussed in §4.2, strict-priority
schemes provide higher unpifoness protection for packets
mapped into higher-priority queues.

When comparing the two traffic distributions, we see that
SP-PIFO performs better under the data mining workload.
This is again expected. While both distributions are heavy-
tailed, the data mining one is more skewed [4] and therefore
easier to handle for SP-PIFO. Indeed, the probability of having
large flows simultaneously sharing the same port (potentially
blocking smaller flows) is lower for the data mining workload.

Data mining (Fig. 7) The average FCTs achieved by PIFO
and SP-PIFO are similar for small flows, i.e. within ∼0.4–
11%. Concretely, SP-PIFO outperforms DCTCP and TCP by
a factor of ∼2–5× and ∼8–30×, respectively. When consid-
ering the 99th percentile, the gap between PIFO and SP-PIFO
slightly accentuates to ∼9.6–26.6%. Still, SP-PIFO outper-
forms DCTCP and TCP by a factor of∼1.5–4.7× and∼12.5–
22×, respectively. The largest performance gap between PIFO
and SP-PIFO occurs at low utilization. In this regime, the num-
ber of packets scheduled is low and the transient adaptation of
SP-PIFO is more visible. Whenever the utilization is >40%,
the difference is consistently below 20%. Finally, SP-PIFO
and PIFO still perform similarly among large flows: within
∼1.9–9%, representing improvements with respect to TCP
and DCTCP of ∼1.4–2.7× and ∼1.5–2.8×, respectively.

Web search (Fig. 8) The results are similar to the data
mining one, with slightly worse performance for SP-PIFO,
especially amongst big flows. Indeed, since the distribution is
less skewed, bigger flows have higher chances to reach higher-
priority queues, blocking transmissions of smaller flows. Still,
we see that the performance of SP-PIFO is within ∼16.54–
32.5% of PIFO for small flows, and between ∼1.3–4.4× and
∼4.7–16.7× better than DCTCP and TCP. Even at the 99th
percentile, the difference between SP-PIFO and PIFO stays
within ∼20.7–32%. Note that, while the percentages might
seem high, the values we are looking at are very small.

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ

SP-PIFO
DCTCP

TCP

(a) (0,100KB): Average on 8 queues

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ

SP-PIFO
DCTCP

TCP

(b) (0,100KB): Average on 32 queues

101

103

105

107

≥2M 0.2M-1M 80K 50K 30K 20K 10K

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Flow Size

PIFO
AFQ

SP-PIFO
DCTCP

TCP

(c) FCT breakdown 70%: Average on 32 queues

Figure 9: Fairness: FCT statistics for all flows at different loads, over the web search workload.

6.1.2 Enforcing fairness across flows

Rank definition & benchmarks We enforce fairness
across flows by implementing the Start-Time Fair Queueing
(STFQ) rank design [13] on top of PIFO and SP-PIFO. We
benchmark our solution with AFQ [21] (§8). We analyze the
performance for different flow sizes and number of queues.
Specifically, we use 8 queues×10 packets in SP-schemes
(resp. 1 queue×80 packets for single-queue schemes) and
32 queues×10 packets in SP-schemes (resp. 1 queue×320
packets for single-queue schemes). For AFQ, we select the
bytes-per-round parameter which gives the best performance.
In our testbed, this is 320 and 80 BpR for the 8-queue and
32-queue scenario, respectively. As in [21], we use DCTCP as
transport layer for AFQ, PIFO and SP-PIFO (with an RTO of
300µs). We set ECN marking to 48KB, i.e. ∼32 packets. We
generate traffic following the pFabric web search distribution.

Summary Fig. 9a and Fig. 9b depict the average FCTs of
small flows across different levels of utilization, when 8
queues and 32 queues are used. Fig. 9c depicts the FCTs
across flow sizes at 70% utilization and for 32 queues. In all
cases SP-PIFO achieves near-PIFO behavior and is on-par
performance with AFQ (current state-of-the-art).

Impact of the utilization (Fig. 9a & Fig. 9b) SP-PIFO stays
within ∼23–28% (resp. ∼21–28%) of ideal PIFO across
all levels of utilization when 8 queues (resp. 32) are used.
Even in the highest utilizations, it is consistently below∼26%
(resp. ∼25%). SP-PIFO performance is at the level of AFQ,
within ∼3–10% (resp. ∼0.5–11%), generating improvements
of ∼1.4–2.3× and ∼2.7–4.2× (resp. ∼1.4–2.3× and ∼3.7–
7.4×) over DCTCP and TCP. The fact that SP-PIFO perfor-
mance is equivalent with 8 and 32 queues is not surprising:
as the bandwidth-delay product is low, only a reduced queue
size is required for efficient link utilization.

Impact of flow sizes (Fig. 9c) At 70% utilization, we see
that SP-PIFO lies within ∼10–30% of PIFO performance
for all flow sizes and is on-par with AFQ. The only excep-
tion is for very small flows (<10K) in which AFQ performs
20% better. SP-PIFO improves DCTCP and TCP behaviors

for small flows, within ∼1.5–3X and ∼2–13X, respectively.
Considering the 99th percentile, we see that SP-PIFO stays
within ∼8–35% of PIFO and improves between ∼12–78%
and ∼1.5–10.76× with respect to DCTCP and TCP.

Impact of the number of queues (Fig. 10) We analyze the
impact of the number of queues on average FCTs for both
AFQ and SP-PIFO. We set the BpR at MSS for all queue
configurations, as in [21], avoiding AFQ dropping packets
too often for cases of fewer queues. We see that while AFQ
has a higher sensitivity with respect to the number of queues,
SP-PIFO preserves a similar level of performance, without
any configuration or prior traffic knowledge.

6.2 Hardware testbed

We finally evaluate our hardware-based implementation of SP-
PIFO on the Barefoot Tofino Wedge 100BF-32X platform [2].
We perform two experiments. First, we analyze the bandwidth
allocated by SP-PIFO to flows with different ranks when
scheduled over a bottleneck link. Second, we measure the
impact on the FCT when SP-PIFO runs pFabric. We show
that SP-PIFO efficiently schedules traffic at potentially Tbps.

Bandwidth shares We transmit 8 UDP flows of 20Gbps be-
tween two servers. We generate the flows progressively, in
increasing order of priority (decreasing rank). We use 4 pri-
ority queues and schedule the flows over a 10Gbps interface.
We generate the flows using Moongen [12] and use an inter-
mediate switch to amplify them to the required throughput.

Fig. 11 depicts the flows’ bandwidth and how SP-PIFO
manages to virtually extend the number of queues. As ex-
pected, the first 4 flows receive the complete bandwidth, since
they are mapped to dedicated queues. As the number of flows
exceeds the number of queues, flows start to share queue
space and see a reduced bandwidth.

Flow completion times We simultaneously generate 1000
TCP flows of different sizes, going from 1GB to 100GB in
steps of 100MB, and schedule them over a bottleneck link of
7Gbps. We set the rank of each flow to the absolute flow size,

10

20

30

40

50

0.2 0.4 0.6 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO Q32
SP-PIFO Q24
SP-PIFO Q16
SP-PIFO Q8

(a) All: Average

10

20

30

40

50

0.2 0.4 0.6 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ Q32
AFQ Q24
AFQ Q16
AFQ Q8

(b) All: Average

Figure 10: Fairness: FCT statistics for all flows at different
loads, when the number of queues is modified.

 0
 2
 4
 6
 8

 10

0 50 100 150 200 250 300 350 400 450

Ba
nd

w
id

th
 (G

bp
s)

Time (s)

Flow1
Flow2

Flow3
Flow4

Flow5
Flow6

Flow7
Flow8

Figure 11: Tofino: Bandwidth allocation under progressive
flow generation with increasing priorities.

following [4]. We compare the FCTs achieved by SP-PIFO
scheduling and the ones achieved by a FIFO queue.

Fig. 12 shows the resulting FCTs. As expected, the FIFO
queue leads to increased FCTs by not considering flow size.
In contrast, SP-PIFO prioritizes short flows over long ones,
minimizing their FCTs and the overall transmission time.

7 Discussion

In this section, we discuss the limitations of SP-PIFO and
how we can mitigate them. We first discuss intrinsic limita-
tions that come from using PIFO as a scheduling scheme. We
then discuss specific limitations of SP-PIFO together with
the problem of adversarial workloads. Finally, we suggest
potential hardware primitives that could facilitate PIFO im-
plementations in the future.

PIFO-inherited limitations Individual PIFO queues suffer
from two main limitations. First, they cannot rate-limit their
egress throughput preventing them from implementing non-
work-conserving scheduling algorithms. SP-PIFO also shares
the same limitation. Second, PIFO queues cannot directly im-
plement hierarchical scheduling algorithms. Yet, as proposed
by [23], multiple SP-PIFO schemes (i.e., using different set
of priority queues) can be grouped as a tree to approximate hi-
erarchical scheduling algorithms. The key challenge consists

 0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(s

)

Flow Identifier

 SP-PIFO
FIFO

Figure 12: Tofino: FCT statistics across different flow sizes
with pFabric ranks.

in figuring out how to allow access of multiple queues with
existing traffic manager capabilities. While this is orthogonal
to this paper, one option would be to recirculate packets, en-
abling access to the traffic manager (and therefore the queues)
multiple times in the same pipeline. Doing so, while limiting
the impact on performance, is an interesting open question.

SP-PIFO-specific limitations The main limitation of SP-
PIFO is that, as an approximation scheme, it cannot guarantee
to perfectly emulate the behavior of a theoretical PIFO queue
for all ranks. We note two things. First, our evaluation (§6)
shows that, for realistic workloads, SP-PIFO performance is
often on-par with PIFO performances. Second, we note that
SP-PIFO can provide strong PIFO-like guarantees for some
ranks by dedicating some queues to them at the price of re-
duced performance for the other ranks. We believe this is an
interesting tradeoff as current switches can support up to 32
queues per port [21].

Adversarial workloads We have argued that, on average,
SP-PIFO can adapt to any kind of rank distribution. This
has certain limitations. First, we assume that all queues are
drained at some point. Nonetheless, a malicious host could
send a large number of high-priority packets and, as a result,
packets in lower-priority queues would never be drained. Such
“starvation” attacks are common to any type of priority scheme.
For instance, a malicious host could try to grab a bigger slice
of the network resources by setting ranks to 0 in slack-based
algorithms [4,9,17] or resetting flow identifiers in fair-queuing
schemes [23]. The problem of starvation in strict-priority
scheduling is also well-known in the context of QoS and
is typically addressed by policing high-priority traffic at the
edge of the network [18].

Aside from starvation attacks we also assume that, for a
given rank distribution, the particular order of ranks is random.
In practice, this is reasonable. While the ranks for individ-
ual flows might have some structure (e.g., monotonically-
increasing ranks), when various flows are scheduled together
the ordering of their packet ranks is randomized. Yet, attack-
ers could try to coordinate large numbers of flows to create
adversarial orderings, which “outplay” the adaptation mecha-

nisms (§B.3). Nevertheless, any non-malicious flow which is
active at the same time can thwart such strategies by randomly
breaking the adversarial order. Aside from that, the network
could be monitored to detect such adversarial attacks.

Facilitating PIFO in the future On a forward-looking per-
spective, we note some improvements in hardware primi-
tives that would facilitate PIFO implementations in the future.
As we already discussed in §5, a higher number of stages
would facilitate per-queue state storage and a higher number
of queues would directly increase PIFO performance. Fur-
ther than that, multiple and dynamic memory access between
the ingress and egress pipelines would allow state updates
after inversions in the highest-priority queue without having
to rely on resubmission techniques. In the same direction,
access to queue information from the ingress pipeline or
an enhanced flexibility in the management of strict-priority
queues directly from the data plane would enable more accu-
rate unpifoness prediction at enqueue, opening the doors to
higher-performance SP-PIFO algorithms.

8 Related work

Programmable packet scheduling While scheduling has
been extensively studied over the years, the idea of making it
programmable is relatively recent [17,22]. In [24], Sivaraman
et. al. suggested programmable scheduling by proving that
the best scheduling algorithm to use depends on the desired
performance objective. In [17], Mittal et. al. made the obser-
vation that, despite certain algorithms accept configurations
to approximate a wide range of objectives, a universal packet
scheduling outperforming in all scenarios does not exist.

Several abstractions for programmable scheduling have
been proposed afterwards. In addition to PIFO [24], Eif-
fel [19] presents an alternative queue structure which ap-
proximates fine priorities by exploiting the characteristics
that define packet ranks in most scenarios to diminish the
required computational complexity. In contrast to [19, 24],
which rely on new hardware designs, SP-PIFO shows that
efficient programmable packet scheduling can be achieved
today, at scale, and on existing devices.

Exploiting priority queues Other (recent) schemes lever-
age multiple priority queues for specific performance objec-
tives. They highlight the need of programmable scheduling
in existing devices [16], and illustrate how rank designs pro-
ducing close-to-optimal results can already be implemented
in existing data planes. For enforcing fairness, FDPA [8] sim-
plifies the computational cost of per-flow virtual counters or
individual user queues in traditional-fair-queuing schemes
by using arrival-rate information at a user level. AFQ [21],
instead, emulates ideal fair queuing by implementing per-flow

counters on a count-min sketch and dynamically rotating pri-
orities in a strict-priority scheme to imitate the round-robin
behavior. SP-PIFO differs by fixing queue priorities and dy-
namically adapting the mapping of packets to those queues.
This actually makes SP-PIFO implementable at line rate in
existing data planes.

pFabric [4] and PIAS [5] show the use of priority queues
in flow completion time minimization. While pFabric relies
in general on a PIFO-queue design, [4] includes experiments
in which flows are mapped to priority queues based on their
size. While pFabric experiments use thresholds fixed from the
knowledge of flow distributions, SP-PIFO adapts the mapping
design automatically per-packet, without any traffic knowl-
edge required in advance. PIAS [5] approaches the case of
unknown flow sizes and uses Multi-level Feedback Queues
(MLFQ) [11] to achieve the desired Shortest Job First (SJF)
behavior, by gradually switching flows from higher to lower-
priority queues as their number of transmitted bytes increase.

In contrast to these proposals, SP-PIFO supports a much
wider range of performance objectives. SP-PIFO (like
PIFO [24]) can be used to implement any scheduling algo-
rithm in which the relative scheduling order does not change
with future packet arrivals. As illustrated in the evaluation
section (§6), the algorithms presented in AFQ [21], FDPA [8],
pFabric [4] and PIAS [5] can be used as ranking designs (i.e.,
setting packet ranks to scheduling virtual rounds, estimated
arrival rates, shortest remaining processing time of flows, or
number of packets transmitted under the MLFQ aging design)
to be run on top of SP-PIFO.

9 Conclusions

We presented SP-PIFO, a programmable packet scheduler
which closely approximates the theoretical behavior of PIFO
queues, today, on programmable data planes. The key insight
behind SP-PIFO is to dynamically adapt the mapping between
the packet ranks and a (fixed) set of strict-priority queues.

Our evaluation on realistic workloads shows that SP-PIFO
is practical: it closely approximates PIFO behaviors and, in
many cases, perfectly matches them. We also confirm that
SP-PIFO runs on actual programmable hardware.

Overall, we believe that our work shows that the benefits of
programmable packet scheduling—experimenting with new
scheduling algorithms—can be fulfilled today, in existing
networks.

Acknowledgments

We are grateful to the NSDI reviewers and our shepherd,
Anirudh Sivaraman, for their insightful comments. We also
thank the members of the Networked Systems Group at
ETH Zürich (especially Edgar Costa Molero) together with
Changhoon Kim from Barefoot for their valuable feedback.

References

[1] Broadcom Trident II. https://www.broadcom.
com/products/Switching/DataCenter/
BCM56850-Series, 2016.

[2] Barefoot Tofino. http://barefootnetworks.com/
products/brief-tofino/, 2017.

[3] Netbench. http://github.com/ndal-eth/
netbench, 2018.

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: Minimal Near-optimal Datacen-
ter Transport. In ACM SIGCOMM, Hong Kong, China,
2013.

[5] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-Agnostic Flow Schedul-
ing for Commodity Data Centers. In USENIX NSDI,
Oakland, CA, USA, 2015.

[6] Alexander Barkalov, Larysa Titarenko, and Malgorzata
Mazurkiewicz. Foundations of Embedded Systems.
Springer International Publishing, 2019.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming Protocol-independent Packet
Processors. 2014.

[8] Carmelo Cascone, Nicola Bonelli, Luca Bianchi, Anto-
nio Capone, and Brunilde Sansò. Towards Approximate
Fair Bandwidth Sharing via Dynamic Priority Queuing.
In IEEE LANMAN, Osaka, Japan, 2017.

[9] David D. Clark, Scott Shenker, and Lixia Zhang. Sup-
porting Real-time Applications in an Integrated Services
Packet Network: Architecture and Mechanism. In ACM
SIGCOMM, Baltimore, MD, USA, 1992.

[10] The P4 Language Consortium. P4-16 Language Speci-
fication, version 1.1.0-rc. https://p4.org/p4-spec/
docs/P4-16-v1.1.0-draft.pdf, 2018.

[11] Fernando J. Corbató, Marjorie Merwin-Daggett, and
Robert C. Daley. An Experimental Time-sharing Sys-
tem. In ACM AIEE-IRE, New York, NY, USA, 1962.

[12] Sebastian Gallenmüller, Paul Emmerich, Daniel Raumer,
and Georg Carle. MoonGen: Software Packet Genera-
tion for 10 Gbit and Beyond. In USENIX NSDI, Oakland,
CA, USA, 2015.

[13] Pawan Goyal, Harrick M. Vin, and Haichen Chen. Start-
time Fair Queueing: A Scheduling Algorithm for Inte-
grated Services Packet Switching Networks. In ACM
SIGCOMM, Palo Alto, CA, USA, 1996.

[14] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In ACM SOSP, Shanghai,
China, 2017.

[15] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael
Schapira, and Ankit Singla. Beyond Fat-trees With-
out Antennae, Mirrors, and Disco-balls. In ACM SIG-
COMM, Los Angeles, CA, USA, 2017.

[16] James McCauley, Aurojit Panda, Arvind Krishnamurthy,
and Scott Shenker. Thoughts on Load Distribution and
the Role of Programmable Switches. In ACM SIG-
COMM, New York, NY, USA, 2019.

[17] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and
Scott Shenker. Universal Packet Scheduling. In USENIX
NSDI, Santa Clara, CA, USA, 2016.

[18] Juniper Networks. Class of Service Feature Guide for
Security Devices. page 115, 2018.

[19] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen
Zegura, Mostafa Ammar, Khaled Harras, and Amin Vah-
dat. Eiffel: Efficient and Flexible Software Packet
Scheduling. In USENIX NSDI, Boston, MA, USA, 2019.

[20] Chuck Semeria. Supporting Differentiated Service
Classes: Queue Scheduling Disciplines. In Juniper Net-
works White Paper, Sunnyvale, CA, USA, 2001.

[21] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating Fair Queueing
on Reconfigurable Switches. In USENIX NSDI, Renton,
WA, USA, 2018.

[22] Anirudh Sivaraman, Suvinay Subramanian, Anurag
Agrawal, Sharad Chole, Shang-Tse Chuang, Tom Edsall,
Mohammad Alizadeh, Sachin Katti, Nick McKeown,
and Hari Balakrishnan. Towards Programmable Packet
Scheduling. In ACM HotNets, Philadelphia, PA, USA,
2015.

[23] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable Packet Scheduling
at Line Rate. In ACM SIGCOMM, Florianopolis, Brazil,
2016.

[24] Anirudh Sivaraman, Keith Winstein, Suvinay Subrama-
nian, and Hari Balakrishnan. No Silver Bullet: Extend-
ing SDN to the Data Plane. In ACM HotNets, College
Park, MD, USA, 2013.

https://www.broadcom.com/products/Switching/DataCenter/BCM56850-Series
https://www.broadcom.com/products/Switching/DataCenter/BCM56850-Series
https://www.broadcom.com/products/Switching/DataCenter/BCM56850-Series
http://barefootnetworks.com/products/brief-tofino/
http://barefootnetworks.com/products/brief-tofino/
http://github.com/ndal-eth/netbench
http://github.com/ndal-eth/netbench
https://p4.org/p4-spec/docs/P4-16-v1.1.0-draft.pdf
https://p4.org/p4-spec/docs/P4-16-v1.1.0-draft.pdf

A Gradient-based algorithm

In this appendix we detail the greedy iterative algorithm pre-
sented in §3.2. We first motivate and proof how the algorithm
converges to the optimal solution (A.1). Second, we show how
to effectively prune the search space making computation effi-
cient while keeping convergence (A.2). Finally, we analyze its
implementation (A.3) and convergence requirements (A.4).

A.1 Greedy optimization

The algorithm (alg. 2) iteratively minimizes the risk by ad-
justing queue bounds, one queue and one step at a time, until
reaching convergence. At each iteration, the algorithm pre-
dicts, for every qi, whether moving the bound by one (in either
direction) decreases the expected risk, and moves the bound in
the direction of maximum decrease. In the following, we dis-
cuss first, how the algorithm can predict the expected change
in risk, and second, why checking a single step is sufficient to
converge.

Algorithm 2 Greedy optimization

Require: k: Step size, qqqinit: Initial bounds
1: procedure ADAPTATION
2: D← /0

3: qqq← qqqinit . Initialize bounds
4: for all p: incoming packet do
5: D←D ∪{rank(p)} . Collect samples
6: if |D|= k then . Adapt bounds
7: P ← COMPUTERANKPROBABILITES(D)
8: repeat
9: qqq← UPDATEMAPPING(qqq, P)

10: until qqq converges
11: D← /0 . Reset samples
12: function UPDATEMAPPING(qqq, P)
13: for qi ∈ qqq do
14: ∆+← RISKFROMINCREMENT(qi, P)
15: ∆−← RISKFROMDECREMENT(qi, P)
16: if (∆+ ≤ 0) and (∆+ ≤ ∆−) then
17: qi← qi +1
18: else if (∆− ≤ 0) and (∆− < ∆+) then
19: qi← qi−1

return qqq

Risk difference In §3.2, we demonstrated that the risk can
be analyzed on a per-queue basis from the cost of mapping
packets with different ranks to the same queue. Consequently,
changes in the risk resulting from changing the bound vector
qqq can be analyzed by comparing the risk difference in affected
queues. To be precise, every change of a single element qi
in qqq affects two queues, queue i and i−1, as ranks are either
moved from i to i−1 (increase in qi) or moved from i−1 to
i (decrease in qi).

Theorem 1 Let r∗ = qi, let Qi be the set of ranks mapped to
queue i (before any changes). Increasing qi by 1 changes the
risk by:

∆
+
i = p(r∗)(∑

r∈Qi−1

p(r)cost(r∗,r)− ∑
r∈Qi

p(r)cost(r,r∗))

(9)

Let r∗ = qi−1. Decreasing qi by 1 changes the risk by:

∆
−
i = p(r∗)(∑

r∈Qi

p(r)cost(r∗,r)− ∑
r∈Qi−1

p(r)cost(r,r∗))

(10)

Proof Increasing qi effectively removes the lowest rank from
queue i, which now becomes the highest rank in queue i−1.
As the new highest rank in queue i− 1, it causes possible
inversions and therefore risk for all other ranks in queue i−1,
resulting in the first, positive term in eq. 9. Conversely, as the
lowest rank in queue, it was prone to receive inversions from
any other element in the queue, supposing a risk in queue i
that is removed with the change. This risk reduction results
in the second, negative, term.

The proof for decreasing qi is symmetrical, with the main
difference that now, rank qi−1 is the one changing from queue
i−1 to queue i.

Greedy step Based on the theory presented, the algorithm
computes the risk and either (for every qi):

(a) Does not move qi, if neither incrementing or decrement-
ing reduces the expected risk.

(b) Increments qi, if incrementing decreases the risk more
than decrementing.

(c) Decrements qi, if decrementing decreases the risk more
than incrementing.

This effectively prunes the search space. At every iteration,
the algorithm only requires a constant amount of compar-
isons, and it does not explore directions further in case they
increase the risk. In the following, we show why deciding not
to explore a direction further after a single step is reasonable.

Theorem 2 Let ∆
+
i and ∆

−
i denote the prospective in- and

decreases from incrementing/decrementing qi by 1. Let ∆
++
i

and ∆
−−
i denote the in- and decreases from increment-

ing/decrementing qi by more than 1. Let the cost function
used to compute the differences be non-decreasing in |r∗− r|
and 0 if and only if r∗ = r. Then:

1. If ∆
+
i > 0, then ∆

++
i > 0.

2. If ∆
−
i > 0, then ∆

−−
i > 0.

Proof

1: If ∆
+
i > 0,

∑
r∈Qi−1

p(r)cost(r∗,r)> ∑
r∈Qi

p(r)cost(r,r∗) (11)

Let r∗∗ = qi +1, i.e. the second-lowest rank in queue i,
which would be moved if we move the queue bound by
more than 1. Moving both r∗ and r∗∗ would cause the
following change in risk:

∆
++
i = (12)

p(r∗)(∑
r∈Qi−1

p(r)cost(r∗,r)− ∑
r∈Qi

p(r)cost(r,r∗))+

(13)

p(r∗∗)(∑
r∈Qi−1

p(r)cost(r∗∗,r)− ∑
r∈Qi

p(r)cost(r,r∗∗))

(14)

Note that we can omit the cost between r∗ and r∗∗ in
eq. 14: as the cost function is by definition symmet-
ric, the additional increase in the left-hand term is ex-
actly equal in magnitude to the additional decrease in
the right-hand term, and thus they cancel each other.
Thus we omit the term to not clutter the notation. Next,
again by definition of the cost function, if r∗∗ > r∗ > r,
then cost(r∗∗,r)≥ cost(r∗,r), and if r > r∗∗ > r∗, then
cost(r,r∗∗)≤ cost(r,r∗). Additionally, we note that the
order of arguments in the cost function does not matter,
as it is symmetrical. Applied to the risk of the lower- and
higher-priority queue respectively (eq. 14), this gives:

∑
r∈Qi−1

p(r)cost(r∗∗,r)≥ ∑
r∈Qi−1

p(r)cost(r∗,r)

∑
r∈Qi

p(r)cost(r,r∗∗)≤ ∑
r∈Qi

p(r)cost(r,r∗)
(15)

And in conclusion, the left hand term in eq. 14 is larger
than the left hand term in eq. 13, and the right hand term
in eq. 14 is smaller then the left hand term in eq. 13.
Consequently, if eq. 13 is positive, eq. 14 must also be
positive (as probabilities are always positive), proving
that if one step does increase the risks, two steps will
also increase the risk. The exact same procedure can be
repeated for larger step sizes, which we omit here.

2: This proof is conceptually identical to the other direction,
and we will thus omit it. The guiding principle is the
same: moving more than one rank can only cause higher
increase in risk in the queue the ranks are moved to, and
lower decrease in risk in the queue the ranks are taken
from, compared to the previous ranks. Thus, if already
moving one rank causes a higher increase in risk in one
queue than decrease in the other, moving additional ranks
does not change this.

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100

N
u
m
b
e
r
o
f
p
a
c
k
e
ts

Rank values

 0
 20
 40
 60
 80

 100

0 200k 400k 600k 800k

Q
ue

ue
 b

ou
nd

s

Packet arrivals

Queue0
Queue1

Queue2
Queue3

Queue4
Queue5

Queue6
Queue7

Figure 13: Greedy convergence for uniform rank distribution.

Conclusion We have explained how the greedy algorithm
only requires exploring the direction which offers a potential
decrease in risk, and we have proved how the risk does not
decrease with the distance between ranks (it cannot be better
to have a bigger inversion, only equal or worse). This allows
the greedy algorithm to quickly decide if a direction is not
worth investigating, effectively pruning the search space.

A.2 Efficient computation
As tracking the complete rank distribution at each iteration
might be too expensive in terms of memory, and repeating
the adaptation until convergence too costly in terms of com-
plexity, we show in the following lines how the mathematical
formulation of the problem allows a simplified implementa-
tion which only requires 4 counters per queue.

From the empirical probability definition, pD(r) =
|rD |/|D|, we can rewrite eq. 9 and eq. 10 as:

∆
+
i =

|qi|
|D|2

· (∑
r∈Qi−1

|r|cost(qi,r)− ∑
r∈Qi

|r|cost(r,qi))

∆
−
i =
|qi−1|
|D|2

· (∑
r∈Qi

|r|cost(qi−1,r)− ∑
r∈Qi−1

|r|cost(r,qi−1))

(16)

Since the queue bound qi stays constant throughout the
adaptation window, each of the summations in eq. 16 can
be implemented through a counter which gets updated every
time a new packet arrives, with its carried rank. Note that the
number of counters required increases linearly with the num-
ber of queues. Also, observe that the counters in eq. 16, only
allow the computation of one step in the gradient. However,
this is enough since, as can be seen in Fig. 13, the one-step
version manages to converge in practice.

0

2

4

6

8

 0 10 20 30 40 50 60 70 80 90 100

Ex
pe

ct
ed

 U
np

ifo
ne

ss
 (·

10
6)

Iteration Number

k = 50
k = 250
k = 500

k = 1000
k = 2500
k = 5000
k = 7000

(a) Convergence vs. adaptation window

0

2

4

6

8

10

 0 10 20 30 40 50 60 70 80 90 100

Ex
pe

ct
ed

 U
np

ifo
ne

ss
 (·

10
5)

Iteration Number

Q = 8
Q = 12
Q = 16
Q = 20
Q = 24
Q = 28
Q = 32

(b) Convergence vs. number of queues

0

4

6

8

10

12

 0 100 200 300 400 500 600 700 800 900 1000

Ex
pe

ct
ed

 U
np

ifo
ne

ss
 (·

10
7)

Iteration Number

R = 100
R = 200
R = 400
R = 600
R = 800

R = 1000

(c) Convergence vs. rank range

Figure 14: Greedy algorithm adaptation microbenchmark.

A.3 Implementation requirements

With the computation presented in A.2, implementing the
gradient-based algorithm on top of n priority queues, requires
n registers for queue-bound storage and (4 · n) registers for
the gradient computation. The mapping process §2 requires
packets to potentially read all the queue-bound values (i.e.,
for packets scheduled in the highest-priority queue). In the
same direction, while most packets only need to update the
two counters corresponding to their queue, the kth packet
in each sequence needs to access all counters to perform
the adaptation decision. This supposes being able to read
n+(4 ·n) different registers for a single packet (without even
considering the updates). Since existing devices only support
up to 12-16 stages, with a single register access per stage [14],
the implementation of the greedy algorithm is not feasible for
a practical number of queues (i.e., n≥ 8).

A.4 Convergence analysis

We now show how the greedy-algorithm performance varies
when modifying the three main degrees of freedom: (i) the
adaptation window (i.e., the number of packets that are moni-
tored before the adaptation mechanism is executed); (ii) the
number of queues available in the strict-priority scheme; and
(iii) the number of ranks in the distribution. For that, we ana-
lyze the unpifoness evolution of a single switch running the
greedy algorithm for a uniform rank distribution from 0 to
100 until convergence. We compute unpifoness as specified
in §3.1, based on the packets scheduled and the queue bounds
used during the adaptation window.

Effects of varying the adaptation window Fig. 14a shows
the unpifoness evolution when we run the greedy algorithm
on top of a strict-priority scheme of 8 queues, and we vary the
adaptation window from 50 to 7000 packets. We observe that,
for the algorithm to converge, the adaptation window needs
to be broad enough to cover a complete sample of the rank
distribution (i.e., one that characterizes all its representative
behaviors). In our case, any adaptation window below 100
packets can not characterize completely the rank distribution.

Indeed, Fig. 14a depicts how the greedy algorithm correctly
converges as soon as more than 200 packets are monitored per
iteration. In general, the broader the adaptation window, the
more precise the rank distribution estimate, and the better the
adaptation decision. However, while a too narrow adaptation
window can suppose missing important information of the
rank distribution and breaking convergence guarantees, a too
broad adaptation window can make the algorithm too slow to
converge, negatively impacting the performance.

Finally, the greedy algorithm only converges if the rank
distribution has a smaller variability than the adaptation rate
(i.e., the rank distribution is stable during the time it takes for
the algorithm to converge). Relating it to the previous point,
simpler rank distributions, which require narrower adaptation
windows, can afford higher levels of variability. In contrast,
complex distributions which take longer to adapt and are
required to keep stable longer for the algorithm to converge.

Effects of varying the number of queues Fig. 14b depicts
the case in which we fix an adaptation window of 1000 pack-
ets, and modify the number of queues from 8 to 32. All queues
have a constant size of 10 packets. We see how the higher
number of queues the lower the unpifoness, and the better the
PIFO approximation. This is expected since each queue can
be perceived as an opportunity to sort packets with different
ranks, and therefore to reduce the number of inversions. Also,
we can see how the number of iterations required by the algo-
rithm to converge does not directly depend on the number of
queues. This results from the fact that each adaptation deci-
sion analyzes (and, if required, updates) potential redesigns
for all the different queue bounds.

Effects of varying the number of ranks Fig. 14c presents
the effects of modifying the range of the uniform rank distri-
bution from 100 to 1000 ranks, when we fix the number of
queues to 8 and the adaptation window to 1000 packets. As
expected, under the same number of queues, a higher number
of ranks implies an increase in unpifoness. Also, as the rank
ranges get closer to the adaptation window, the distribution
estimates get worse, and the adaptation gets tougher.

B Theoretical analysis of SP-PIFO

SP-PIFO is a highly-dynamic probabilistic system. In partic-
ular, its queue bounds qqq change with nearly every incoming
packet. Nevertheless, in this section we show that the system
has an attractive equilibrium qqq∗ (B.1), how this equilibrium
balances the different causes of inversions (B.2), and we dis-
cuss the limitations and open question of our analysis (B.3).

B.1 Stable equilibrium

Queue-bound dynamics Consider SP-PIFO as a discrete-
time system, where each time step corresponds to an arriving
packet. Let qqqt be the queue bounds at step t, when the t-th
packet arrives. Then, the queue bounds at step t +1 are:

qqqt+1 = qqqt +∆(rt) (17)

where rt is the rank of the t-th packet, and ∆(rt) is the change
this packet causes on the queue bounds. The queue-bound
change is given by the “push-down” and “push-up” stages of
SP-PIFO, respectively. If the packet causes an inversion in
the highest-priority queue, all queue bounds are decreased
by qt

1− rt . Otherwise, there is exactly one queue i such that
qt

i ≤ rt < qt
i+1, and only qi is set to rt , or equivalently, is

increased by rt − qt
i . Finally, let p(rt) be the probability of

rank r for the t-th packet. Then, the expected value of the
queue bounds at step t +1, and the expected difference to the
queue bounds at step t are, respectively: 3

E
[
qt+1

i
]
= E

[
qt

i
]

(18)

+ ∑
qt

i≤rt<qt
i+1

p(rt)(rt −qt
i)︸ ︷︷ ︸

∆
+
i (qqqt ,rt)

(19)

− ∑
rt<qt

1

p(rt)(qt
1− rt)

︸ ︷︷ ︸
∆−(qqqt ,rt)

(20)

⇔ E
[
qt+1

i −qt
i
]
= ∆

+
i (qqq

t ,rt)−∆
−(qqqt ,rt) (21)

Equilibrium As expected, we can see from eq. 21 that the
change of queue bounds is determined by the “push-up” (∆+

i)
and “push-down” (∆−) stages working against each other.
Indeed, if ∆

+
i is larger than ∆−, the queue bound increases,

and vice versa. The system has an equilibrium qqq∗, where ∆
+
i =

∆− and the expected change is 0. Note that this equilibrium
depends on the rank probability.

Attraction The equilibrium qqq∗ is attractive, i.e. if qt
i < q∗i ,

E[qt+1
i −qt

i]> 0, and vice versa. For small perturbations, this
is straightforward. Assume that all queue bounds are in equi-
librium, except qi. If qt

i < q∗i , then ∆
+
i (qqq

t ,rt) > ∆
+
i (qqq

∗,rt),

3For queue i = n, there is no qt
i+1 and there is no upper bound on rt .

because the sum in eq. 19 has (i) more (non-negative) terms;
and (ii) each term is weighted stronger, as the difference
rt −qt

i is larger. On the other hand, ∆−(qqqt ,rt) is either equal
to ∆−(qqq∗,rt) (for i > 1) or even smaller (for i = 1, as there
are less, and lesser weighted, terms in the sum 20). Thus, the
increase is larger than the decrease, and the expected change
to qi is positive. The argument for qt

i > q∗i is symmetrical.
For larger disturbances, the equilibrium is also attractive,

but it might take more than a single time step, as the “push-up”
stage for qi also depends on qi+1: if both qi < q∗i and qi+1 <
q∗i+1, the “push-up” might be too weak to pull qi towards
the equilibrium. However, this is not the case for the lowest-
priority queue qn, for which the “push-up” does not depend
on another queue. Thus, lower-priority queues (at least qn)
might be pulled towards the equilibrium at first, while other
qi are not. Notice that an expected increase of qt

i+1 increases
the “push-up” mechanism for qt+1

i and decreases it for qt+1
i+1

(eq. 19). Eventually, as the lower-priority queue bound is
getting closer to the equilibrium, the higher-priority queue
bound is also pulled towards the equilibrium. This continues
until the highest-priority queue, where an expected increase of
qt

1 also increases the “push-down” mechanism for all bounds
at step t +1 (eq. 20). As a result, over multiple time steps, the
expected effects of the “push-up” and “push-down” stages
equalize, eventually pulling all qi towards q∗i .

B.2 Balance

As explained in §4, there are three main reasons for unpi-
foness: (i) inversions in the highest-priority queue, after which
all queue bounds are decreased; (ii) inversions in a lower-
priority queue after its queue bound has been decreased; (iii)
inversions in a lower-priority queue, if its highest rank “over-
takes” the lowest rank of a higher-priority queue.

As we can see in eq. 19, eq. 20, and eq. 21, all these factors
play a role in the dynamics of SP-PIFO. At the equilibrium,
the probability of “push-down”, which is exactly the probabil-
ity of an inversion in the highest-priority queue (weighted by
its severity), is equalized with the probability of a packet be-
ing mapped to any other queue (again weighted, more on this
below). While this does not directly correspond to inversions,
the more packets are mapped to lower-priority queues, the
higher is the probability of an inversion in those queues after
a “push-down”. SP-PIFO thus keeps a balance between inver-
sions (i) and (ii), as decreasing (i) would require a stronger
“push-down”, which would then increase (ii), and vice versa.

Finally, as mentioned above, the ranks in a queue are
weighted by how far they are away from the queue bound
(rt − qt

i). This penalizes long (in terms of distinct ranks)
queues, which helps to reduce (iii), as the probability for one
queue “overtaking” another increases the further the actual
queue bound is from the highest-rank packet in the queue,
which increases with the length of the queue.

B.3 Assumptions and limitations
The analysis presented above is based on a few assumptions,
which we argue are justified, yet pose some open questions.

First, we assume that there exists a finite distribution of
ranks. This is given in practice. Since ranks need to be pro-
cessed and stored in hardware, which offers restricted re-
sources, rank ranges must have a limited size.

Second, although SP-PIFO can rapidly adapt to varying
rank distributions (in particular faster than the greedy algo-
rithm), we assume that the rank distribution is stable enough
such that an equilibrium can exist at all. However, it remains
an open question whether there is a point in which the rank-
distribution variation might be too fast for the system to actu-
ally converge to an equilibrium. In that (hypothetical) case,
the analysis presented herein would not be useful to provide
any additional insights on the performance of SP-PIFO.

Finally, we assume that the ranks appear in random order,
independently from each other. At the first glance, this may
seem irrational, as many scheduling algorithms have some
structure in the way how ranks are assigned to packets for a
given flow. Nevertheless, in practical scenarios, many flows
are scheduled together, and even though the ranks for individ-
ual flows might be structured, the combined ranks of packets
across flows become randomized.

Adversarial workloads Based on the previous assump-
tions, we have shown that SP-PIFO is attracted towards an
expected equilibrium, in which the different sources of unpi-
foness are balanced. However, there are also some limitations.

On the one hand, this equilibrium exists only in expecta-
tion, and the queue bounds are also only attracted to it in
expectation. The actual queue bounds depend on the order
in which packets arrive, as do inversions. So, even though
on average, assuming a random rank ordering, the system
might be balanced, there exist particular adversarial rank or-
derings, which “outplay” the two stages to create events of
large unpifoness. An adversary might attempt to abuse this by
coordinating a large number of flows to force an adversarial
ordering of packet ranks. As an example, she might try to
increase all queue bounds as much as possible before trigger-
ing a “push-down” reaction (e.g., by generating sequences of
monotonically-increasing packet ranks). With the sudden de-
crease in queue-bound values, the high-rank packets mapped
in the queues would generate inversions to the new packets.

Nevertheless, any non-malicious coexisting flow can easily
thwart such strategies, by just randomly breaking the adversar-
ial order. Still, it might be interesting to classify all adversarial
orderings, and subsequently monitor the network to actively
detect such type of attacks.

	Introduction
	Overview
	SP-PIFO design
	Problem statement
	Gradient-based adaptation algorithm
	Limitations

	Our approach: SP-PIFO
	Per-packet adaptation algorithm
	SP-PIFO analysis
	Characterizing general SP-PIFO behavior
	Characterizing SP-PIFO design space

	Implementation
	Evaluation
	Performance analysis
	Minimizing Flow Completion Times
	Enforcing fairness across flows

	Hardware testbed

	Discussion
	Related work
	Conclusions
	Gradient-based algorithm
	Greedy optimization
	Efficient computation
	Implementation requirements
	Convergence analysis

	Theoretical analysis of SP-PIFO
	Stable equilibrium
	Balance
	Assumptions and limitations

